
Preface to Version 1
This report contains a description of computer programs prepared for the SCEC
Stress-Triggering and Deformation Software Training Workshop held September 7-9,
1999 at Stanford University. The program package, VISCO1D, is designed to handle
computation of deformation fields related to postseismic relaxation in situations
commonly encountered in practice. For example, they are well suited for calculating
postseismic deformation at Earth’s surface following large crustal earthquakes for
comparison with local or regional geodetic data. This report is separated into two
parts: MANUAL and TUTORIAL. In the MANUAL it is my intention to give the
necessary theoretical background for understanding what problem the programs are
actually solving. In the TUTORIAL, I attempt to give prospective users sufficient
familiarity with the programs that they will be able to run them independently. The
example problems were chosen to bring out the variety of problems that can be solved
with VISCO1D.
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Preface to Version 2
In the 3 1/2 years since the original distribution of the programs, a few improvements
have been made. These are:

(1) In the conversion from slip values to moment tensor components, the old version
assumed a constant (internally specified) shear modulus. The current version uses the
correct depth-dependent values of elastic moduli (i.e., those specified in ’earth.model’)
to make this conversion.

(2) The old VTORDEP and VSPHDEP compute exact values of mode eigenfunctions
at 10 depth points within the upper elastic layer and store them in their respective
output files. Cubic spline interpolation is then used by STRAINX and STRAINW to
obtain the function values elsewhere. Subsequent testing has shown that small errors
are introduced by the interpolation process. The new version uses 40 depth points to
represent the mode eigenfunctions.

The combined effect of the above two changes means that values of displacement and
strain computed by the new version will differ from those of the old version by a few
%. Bear this in mind when running the example problems in the tutorial and
comparing with the printed ’old’ results.

(3) In the source codes, old fortran commands such as "dfloat" and "float" have been
replaced by newer commands which are better compatible with most platforms.

(4) An automatic criterion for ensuring stable mode computation has been revised.
The old criterion was "too reliable", removing too many well-determined modes from
the basis set.

(5) Several typos in the equations have been corrected.

(6) A new section has been added to address validation of VISCO1D.

Fred Pollitz
May 8, 2003
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MANUAL

VISCO1D is a program package designed to describe the response of a spheri-

cally stratified elastic-viscoelastic medium to the stresses generated by an earthquake

occurring in one of the elastic layers. The response is described in a spherical earth

geometry in terms of a spherical harmonic expansion of spheroidal and toroidal motion

components, each component representing one "mode" of relaxation with its own

characteristic decay time and spatial deformation pattern. It is highly flexible and

allows the determination of time-dependent postseismic deformation fields (three com-

ponents of displacement and six independent components of strain) at any depth level.

It handles shear dislocations on a specified fault plane, or extension across a specified

fault plane. Use of the program package consists of four main parts:

1. Specification of a stratified Earth model (elastic moduli and viscosity of every

layer).

2. Identification of spheroidal and toroidal motion modes on this Earth model, consist-

ing of a set of characteristic decay times for each spherical harmonic degree.

3. Determination of the corresponding displacement-stress vectors for each of these

modes.

4. Determination of postseismic deformation at specified times, observation points

(lat,lon,depth), and source geometry and slip.

There are two sets of programs, one designed for non-gravitational viscoelastic

response and the other for gravitational viscoelastic response. The former runs consid-

erably faster.
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(1) Theoretical Background

Pollitz [1992] gave an analytic formulation for the time-dependent postseismic

relaxation on a spherically layered viscoelastic Earth model, in the absence of gravita-

tional relaxation, and Pollitz [1997] extended this to the case of gravitational viscoelas-

tic relaxation. The following summararizes the methods given in those papers.

We work in a spherical (r , q, f) epicentral coordinate system such that q = 0

corresponds to the source epicenter S (Figure 1). Variables q and f then denote the

angular distance and azimuth (taken positive counterclockwise from due South) from

the source epicenter to the observation point. For a layered elastic-viscoelastic rheol-

ogy, the correspondence principle can be applied to the equations of static equilibrium

to yield a solution which may be expanded in terms of normal modes. These solutions
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are separable into spheroidal and toroidal modes.

The correspondence principle allows us to express the Laplace-transformed solu-

tions of the equations of static equilibrium into solutions of the untransformed equa-

tions of equilibrium provided that shear modulus µ and bulk modulus κ take the form

κ(r , s ) = κ(r )

µ(r , s ) =
s + µ(r ) ⁄ η(r )

µ(r ) s_ _____________

(1)

where µ(r ), κ(r ), and η(r ) are the spherically symmetric distribution of shear

modulus, bulk modulus, and viscosity, respectively. Equation (1) is appropriate for a

Maxwell viscoelastic fluid rheology. The second of equations (1) means that only

relaxation in shear is considered here. Equation (1) implies that at long times after a

stress perturbation, corresponding to the limit s −→ 0, effective shear strength will

approach zero, i.e. the material will possess no shear strength. Cohen [1982, Appendix]

has given the stress−strain relations for the time−dependent deformation of a stan-

dard linear solid, consisting of a purely elastic element with rigidity µa in series with

a Kelvin element, which consists of an elastic element with rigidity µb in parallel with

a viscous element of viscosity η. This rheology allows for a long-term shear strength

µ′ equal to

µ′ =
µa + µb

µa µb_ _______ (2)

The correspondence principle for a standard linear solid takes the form (equation (4) of

Pollitz and Sacks, 1996)

κ(r , s ) = κ(r )

µ(s ) =
s + τ−1

µa s + µ′ τ−1
_ ___________

(3)

where τ = η ⁄ (µa + µb ). Clearly this reduces to a Maxwell viscoelastic fluid when

µb = 0.

Let ρ0(r ), µ(r ), and κ(r ) denote the density, shear modulus, and bulk modulus,

respectively, on a spherically symmetric reference Earth model, and let φ0(r ) denote
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the corresponding gravitational potential. After an earthquake the Earth moves from its

initial state of equilibrium, and we define the perturbed density and gravitational

potential at r = (r , θ, φ) and time t as

ρ(r, t ) = ρ0(r ) + ρ1(r, t ) (4)

φ(r, t ) = φ0(r ) + φ1(r, t )

Let a source with moment tensor M(t ) be located at rs . Denoting the displacement

field with u(r, t ) and the corresponding elastic stress tensor with T(r, t ), the linearized

equations of static equilibrium are

−ρ0 ∇φ 1 − ρ1 ∇φ 0 − ∇ [ρ0 u.∇φ 0] + ∇ .T = M(t ):∇δ (r − rs )

ρ1 = −∇ .(ρ0u)

∇ 2φ1 = 4πG ρ1 (5)

T = (κ −
3
2_ _µ) (∇ .u) I + 2µ ε

∇ 2φ0 = 4πG ρ0

Equations (5) are equivalent to equations (1), (2), (10), and (11) of Dahlen [1972]

without the inertial and rotational terms. The fourth equation in (5) assumes an isotro-

pic elastic medium. Except at the source radius, where the following quantities may be

discontinuous, equations (5) are to be solved subject to the boundary conditions (1) u

is continuous except at fluid-solid boundaries where r̂.u must be continuous, (2) r̂.T is

continuous, (3) φ1 is continuous, and (4) r̂.∇φ 1 + 4πG ρ0 r̂.u is continuous. In (5), ε is

the strain tensor

ε =
2
1_ _ 

 (∇ u) + (∇ u)T 
 (6)

I is the 3×3 identity matrix, and G is the gravitational constant. Defining the gravita-

tional acceleration on the reference Earth model as

g0 = −g 0 r̂ = −∇φ 0 (7)

we may rewrite the first of (5) as

−ρ0∇φ 1 − ρ1∇φ 0 − ∇ [(r̂.u)ρ0g 0] + ∇ .T = M(t ):∇δ (r − rs ) (8)

Viscoelasticity may be introduced at this stage. Defining the Laplace transform

of a function f (t ) via
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f̃ (s ) =
0
∫
∞

f (t ) e −st dt

the equations of quasi-static equilibrium may be obtained via the correspondence prin-

ciple, taking the Laplace transform of (5) and replacing µ(r ) and κ(r ) with the expres-

sions in (1) or (3). In particular, the first of (5) takes the form

−ρ0∇φ̃ 1 − ρ̃1∇φ 0 − ∇ [(r̂.ũ)ρ0g 0] + ∇ .T̃ =
s
1_ _ M:∇δ (r − rs ) (9)

In (9) it has been assumed that the source acts as a step function in time and that it is

embedded in a purely elastic medium.

The first three terms on the left-hand side of (9) depend explicitly on either g 0 or

G . The third term contains a dependence on both after noting that

∇ g 0 =



−

r
2_ _ g 0 + 4πG ρ0





r̂ (10)

The first term on the left-hand side of (9) scales as 4πG ρ0
2  u  , and from (10) the

G dependent part of the third term scales similarly. Strain scales as  u  /wavelength

and the gradient of strain scales as  u  /(wavelength)2. The relative importance of

G terms and elastic terms in the force balance (9) is then given by the dimensionless

ratio

(κ or µ)(  u  ⁄ (wavelength)2)

4πG ρ0
2  u _ ________________________ =

κ or µ
4πG ρ0

2 (wavelength)2
_ __________________

Using typical parameter values in the upper mantle, this ratio equals 0.05 at

wavelength 400 km and diminishes rapidly at shorter wavelength. A similar scaling

analysis for the relative importance of G terms and g terms in equation (9) shows that

this is governed by the ratio

ρ0g 0(  u  ⁄ (wavelength))

4πG ρ0
2  u _ _____________________ =

g 0

4πG ρ0 (wavelength)_ _________________

This ratio equals about 0.10 at 400 km wavelength. Since most observational con-

straints on postseismic relaxation correspond to wavelengths shorter than 400 km, the

neglect of G terms in (9) is an excellent approximation. This scaling analysis remains
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valid even in the relaxed limit because the elastic term proportional to κ(∇ .u) is non-

negligible. Justification of the neglect of perturbations in gravitational potential for

postseismic relaxation calculations on a layered half-space was previously discussed by

Rundle [1981]. The equations of quasi-static equilibrium then reduce to

ρ0 g 0




((∇ .ũ) +

r
2_ _ (r̂.ũ)) r̂ − ∇ (r̂.ũ)





+ ∇ .T̃ =
s
1_ _ M:∇δ (r − rs )

ρ̃1 = −∇ .(ρ0 ũ)

T̃ = κ(r , s ) (∇ .ũ) I + 2µ(r , s ) ε̃ (11)

∇ 2φ0 = 4πG ρ0

with the surface boundary condition

r̂.T̃ = 0 r = R (12)

and an appropriate lower boundary condition in the Earth’s interior. In the following

the notation f̃ will be dropped and the argument t or s will indicate evaluation in the

time domain or Laplace transform domain, respectively.

In the normal mode method, (11) are solved as a superposition of normal modes,

each of which satisfies (11) without the source term (proportional to M), with excita-

tion coefficients which depend on the moment tensor and source depth. I will provide

details of this solution for the case of spheroidal modes, and then quote the appropriate

results for the toroidal modes.

1.1 Spheroidal Motion Solution

The total spheroidal mode displacement field which solves (11) can be expanded as a

sum of normal modes in the form [Pollitz, 1992, equation (18)]

uS (r,s ) =
n
Σ

l =0
Σ
∞

m =0
Σ
2

n (I 1)l (n ωl )2


 n y 1l (r , s ) r̂ + n y 3l (r , s ) ∇ 1


_ __________________________ (13)

Σm +1(φ,s ) (−1)m Xl
m(θ) (1⁄s )

The corresponding traction on spherical shells of radius r can be written
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r̂.TS (r,s ) =
n
Σ

l =0
Σ
∞

m =0
Σ
2

n (I 1)l (n ωl )2


 n y 2l (r , s ) r̂ + n y 4l (r , s ) ∇ 1


_ __________________________ (14)

Σm +1(φ,s ) (−1)m Xl
m(θ) (1⁄s )

In (13) and (14), ∇ 1 is the surface gradient operator

∇ 1 =
∂θ
∂_ __ θ̂ +

sinθ
1____

∂φ
∂_ __ φ̂

and the yjl are components of a displacement-stress vector

n yl =







î n y 4l

n y 3l

n y 2l

n y 1l








(15)

The Σ functions are mode excitation functions which contain the dependence on the

source depth rs , the moment tensor, and the source-observation point azimuth φ. They

are given by [Pollitz, 1992]

Σ1 =


î 2 π

l + 1⁄2_ ______




1⁄2 

î
Mrr ∂r y 1 + (M φφ + M θθ) rs

−1



y 1(rs ) −

2
1_ _[l (l + 1)] y 3(rs )









Σ2(φ) =


î 2 π

l + 1⁄2_ ______




[l (l + 1)]1⁄2 (Mr θ cosφ + Mr φ sinφ) [∂r y 3(rs ) + rs
−1(y 1(rs ) − y 3(rs ))]

Σ3(φ) =


î 2 π

l + 1⁄2_ ______




[l (l + 1) (l − 1) (l + 2)]1⁄2 (16)

×


î 2

1_ _(M θθ − M φφ) cos2φ + M θφ sin2φ




rs
−1 y 3(rs )

Xl
m(θ) is a Legendre function defined by Yl

m(θ, φ) = Xl
m(θ) exp [im φ], where Yl

m (θ, φ)

is a fully normalized spherical harmonic of degree l . Variable n (I 1)l is the kinetic

energy integral given by equation (11) of Pollitz [1992] and n ωl is the corresponding

frequency for the n th dispersion branch with spherical harmonic degree l ; these two

factors also depend on s .

In layer ν at a fixed l , yl satisfies an equation of the form [Takeuchi and Saito,

1972]
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dr

d yl (r )_ ______ = Al ν(r ) yl (r ) (17)

Two independent solutions yl
(I ) and yl

(II ) are integrated upward layer by layer from an

appropriate starting radius to the surface r = R . Stress-free boundary conditions

require that there exists a linear combination of these two solutions with vanishing

shear and normal stress. This yields the free surface boundary condition

(yl
(1)(R ))2 ×(yl

(2)(R ))4 − (yl
(1)(R ))4 ×(yl

(2)(R ))2 = 0 (18)

The subscripts 2 and 4 in (18) refer to shear and normal stress components, respec-

tively, of the displacement-stress vectors.

In the nongravitational case, yl is a 4×1 column vector and Al ν is a 4×4 matrix

which depend on the transformed elastic moduli of layer ν and the spherical harmonic

degree l . Since the functions I 1 are positive for all modes, the poles of u(r , s ) occur

at values s = −sj for which ω2(s ) = 0. Consider, for example, the r component of the

displacement field. Assuming that all of the poles are simple poles (which is proved

below), then the Laplace transformed displacement field can be rewritten in the form

r̂.uS (r,s ) = r uS
0(r)

s
1_ _ +

j
Σ s + sj

(r γS )j (r)_ ________
s
1_ _ (19)

In general, each displacement component of total degree l has an associated set of

poles { sj } used in the evaluation of (19). At fixed l , the coefficient (r γS )j (r) in (18)

equals the residue of the expression within the summation of (13) evaluated at

s = −sj .

(r γS )j (r) = y 1(r )
I 1(s )

ds
d_ __ ω2(s )  s =−sj

m
Σ 

 Σm +1(φ,s ) Xl
m(θ) (−1)m 


_ ________________________ (20)

An expression for (d ⁄ds )ω2(s ) is given by Pollitz [1992, equations (22)-(25)]. Since

publication of that paper I have used an alternative equivalent expression which uses µ

and κ as independent variables and brings out the fact that (d ⁄ds )ω2(s ) is always posi-

tive
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εj = I 1(s )
ds
d_ __ ω2(s )  s =−sj

=
0
∫
R

I 1



 ∂µ

∂ω2
_ ___




 κ ∂s

∂µ(r , s )_ _______ dr (21)

where [Romanowicz, 1987, Appendix I]

I 1



 ∂µ

∂ω2
_ ___




 κ =



 3

1_ _ (2∂r y 1(r , s ) − F )2 + L (∂r y 3(r , s )

+ r −1(y 1(r , s ) − y 3(r , s )))2+ (r −1y 3(r , s ))2 (2(L − 1) L − L 2) 
 r 2

F = r −1 (2y 1(r , s ) − l (l +1) y 3(r , s )) (22)

L = l (l +1)

The corresponding term proportional to [∂ω2⁄∂κ]  µ is omitted because

(∂⁄∂s ) κ(r , s ) = 0 from equation (1); the derivative (∂⁄∂s ) µ(r , s ) which appears in the

integrand in (21) is readily calculated from (1). Equation (22) combined with the fact

that I 1(s ) > 0 and (∂⁄∂s ) µ(r , s ) > 0 for real-valued s proves that (d ⁄ds ) ω2(s ) is

always positive, which proves that the poles of (13) are simple poles. It should be

pointed out that in the gravitational case the integrand given in (21) has precisely the

same form as in the nongravitational case (that is, no additional terms proportional to

g 0 are introduced into (22)).

The inverse Laplace transform of (19) has the form

r̂.uS (r, t ) = r uS
0(r) H (t ) +

j
Σ sj

(r γS )j (r)_ ________ [1 − e −sj t ] (23)

where H (t ) is the Heaviside step function. The term proportional to H (t ) in (23)

represents the coseismic displacement field and will be dropped from now on in order

to concentrate on the postseismic displacement fields represented by the summation

term in that equation. Going through the same procedure for all three displacement

components yields an expression for the total postseismic displacement field of the

form

uS (r, t ) =
j
Σ [(r γS )j (r) r̂ + (θγS )j (r) θ̂ + (φγS )j (r) φ̂]

×
sj

1 − e −sj t
_ _______ (24)
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where the γ functions for a point source with a given moment tensor are given by

[Pollitz, 1992, equation (27)].

(r γS )j (r) = y 1(r ,−sj )
m =0
Σ
2 

 Σm +1(φ,s ) Xl
m(θ) (−1)m 

 εj
−1

(θγS )j (r) = y 3(r ,−sj )
m =0
Σ
2 

 Σm +1(φ,s ) ∂θXl
m(θ) (−1)m 

 εj
−1 (25)

(φγS )j (r) = y 3(r ,−sj )
m =1
Σ
2 

 ∂φΣm +1(φ,s ) Xl
m(θ) (−1)m 

 εj
−1 (sinθ)−1

We may now address the character of the solutions of (17). In the nongravita-

tional case, assuming fixed l , the solution of (17) in layer ν can be written in powers

of r [Pollitz, 1992]

yν(r ) = c 1 diag (r l +1 r l r l +1 r l ) p1ν (26)

+ c 2 diag (r l −1 r l −2 r l −1 r l −2) p2ν

+ c 3 diag (r −l r −l −1 r −l r −l −1) p3ν

+ c 4 diag (r −l −2 r −l −3 r −l −2 r −l −3) p4ν

The { pi ν} in (26) are column vectors which depend only on the elastic moduli in layer

ν, the ci are arbitrary constants, and diag denotes the 4×4 matrix consisting of the

specified diagonal elements and zero off-diagonal elements. In the gravitational case, a

6×6 matrix specified by Takeuchi and Saito [1972] and given by Pollitz [1992, equa-

tion (43)] determines the layer deformation. However, our discussion of the G terms

of (9) showed that coupling with the perturbations in gravitational potential is negligi-

ble, and then Al ν is given by the upper left 4×4 submatrix of this matrix:

Al ν(r ,s ) =






îρ gr −1−2γr −2

−r −1

−4ρgr −1+4γr −2

−2λσ−1r −1

−λσ−1r −1

0

2(λσ−1−1)r −1

σ−1

−2µr −2+(γ+µ)l (l +1)r −2

r −1

(−2γr −2+ρgr −1)l (l +1)

λσ−1l (l +1)r −1

−3r −1

µ−1

l (l +1)r −1

0 






γ = λν(s ) + µν(s ) − λν
2(s ) σ−1

σ = λν(s ) + 2 µν(s )

λ = λν(s ) = κν(s ) −
3
2_ _ µν(s )

µ = µν(s )

(27)



- 13 -

Rundle [1982] and Iwasaki [1985] incorporated gravitation effects into their respective

half-space formulations by assuming constant gravitational acceleration g , which is an

excellent approximation for that part of the Earth which influences near-field crustal

deformation (namely, this approximation accounts well for the weight of the thin upper

lithospheric plate and any restoring force at the lithosphere/asthenosphere boundary).

Similarly, I will assume that the product ρ0 g 0 varies with radius according to

ρ0(r ) g 0(r ) =
r

constant_ _______ (28)

Agreement with the actual ρ0(r )g 0(r ) in the Earth can be enforced as accurately as

necessary by dividing the crust and mantle into as many layers as necessary. This can

be done with small error by employing single layers for the upper crust and lower

crust. An appropriate choice of the constant in (28) is found to match the contrast in

ρ0 g 0 at the crust/mantle boundary and accommodate about one-half of the increase in

the actual ρ0(r ) g 0(r ) on Model 1066A [Gilbert and Dziewonski, 1975] in the entire

upper mantle; thus it is, to a first approximation, better than a model assigning con-

stant density and gravitational acceleration to the upper mantle.

With this approximation, it is then straightforward to represent the deformation in

a layer as a sum of four independent solutions which depend on powers of r . Under

the above assumptions the solution to (17) may be written in the form

yν(r ) = Pν(r , r 0) y ν(r 0) (29)

Pν(r , r 0) = diag [r , 1, r , 1] exp


î
(Ãν−diag [1, 0, 1, 0]) ln

r 0

r_ __




× diag [r 0
−1, 1, r 0

−1, 1]

where Ãν is equal to Aν with all appearances of r removed, and r 0 is an arbitrary

reference radius, The propagator matrix Pν has the property Pν(r , r ) = I, the identity

matrix, and the elements of y ν(r ) depend upon powers of r like r p +1 (displacement

components) and r p (stress components), where p is one of the eigenvalues of

Ãν−diag [1, 0, 1, 0]. In the nongravitational case, these eigenvalues are p = l , l −2,
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−l −1, and −l −3, which leads to equivalence with the representation (26). The matrix

exponential required in (29) can be calculated either directly using a scaled Taylor’s

expansion or with an eigenvalue expansion in powers of r .

In the implementation of this algorithm, an analytic solution for the deformation

of a homogeneous sphere is applied at either the lowest depth specified in the earth

model engths deep (one wavelength equals 2πR ⁄(l +1⁄2), where R is Earth’s radius and

l is the total degree number), whichever is shallower, and and upward integration of

(17) is begun at that radius. This is sufficient to describe the depth-dependent defor-

mation field for shallow sources, i.e. those within the uppermost elastic layer. If post-

seismic deformation from deeper sources were sought, then the lower boundary condi-

tion would need to be applied at a deeper level and the free-surface boundary condi-

tion might need to be applied at some finite depth, depending on source depth. In the

current version intended for application to shallow seismic sources, the procedure has

been found to be stable with respect to a change in the starting depth of integration, as

has been obtained previously in related investigations of static elastic deformation

[Pollitz, 1996] and propagating waves [Friederich and Dalkolmo, 1995].

1.2 Toroidal Motion Solution

Specification of the solution for the toroidal mode component of deformation is

analogous to that outlined here for the spheroidal mode displacement field Working

again in the Laplace transform domain, the total toroidal mode displacement field

which solves (11) can be expanded as a sum of normal modes in the form

uT (r,s ) =
n
Σ

l =0
Σ
∞

m =1
Σ
2

n (I 1)l (n ωl )2


 − n y 1l (r , s ) r̂ × ∇ 1


_ ___________________ (30)

× Σm +3(φ,s ) (−1)m Xl
m(θ) (1⁄s )

The corresponding traction on spherical shells of radius r can be written
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r̂.TT (r,s ) =
n
Σ

l =0
Σ
∞

m =1
Σ
2

n (I 1)l (n ωl )2


 − n y 2l (r , s ) r̂ × ∇ 1


_ ___________________ (31)

Σm +3(φ,s ) (−1)m Xl
m(θ) (1⁄s )

As before, n (I 1)l is the kinetic energy integral given by equation (11) of Pollitz

[1992]. The source excitation functions are given by

Σ4(φ) =


î 2 π

l + 1⁄2_ ______




[l (l + 1)]−1⁄2 (−Mr θ sinφ + Mr φ cosφ) [∂r y 1(rs ) − rs
−1 y 1(rs )]

Σ5(φ) =


î 2 π

l + 1⁄2_ ______




[l (l + 1)]−1⁄2 [(l − 1) (l + 2)]1⁄2 (32)

×


î
−

2
1_ _(M θθ − M φφ) sin2φ + M θφ cos2φ





rs
−1 y 1(rs )

The displacement-stress vector

n yl =


î n y 2l

n y 1l 



(33)

obeys a matrix differential equation of the same form as (17), with y and A being 2×1

and 2×2 matrices, respectively. The differential equation which must be integrated

from an appropriate starting radius up to the surface is

dr

d yl (r )_ ______ = Al ν(r ) yl (r ) (34)

subject to boundary condition

y 2(R ) = 0 (35)

For spherical harmonic degree l and in layer ν,

Al ν(r ,s ) =


î r −2µ(s )(l −1)(l +2)

r −1

−3r −1

µ−1(s ) 



(36)

As in the case of spheroidal modes, each l component has a corresponding set of poles

s = −sj for which ω2(s ) vanishes. In the toroidal mode case, displacement amplitudes

are inversely proportional to

εj = I 1(s )
ds
d_ __ ω2(s )  s =−sj

=
0
∫
R

I 1



 ∂µ

∂ω2
_ ___




 κ ∂s

∂µ(r , s )_ _______ dr (37)
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where

I 1



 ∂µ

∂ω2
_ ___




 κ =

µ2

1_ __ (r y 2)2 + (l − 1) (l + 2) (y 1)2 (38)

The l component of the toroidal mode displacement field is then given by

uT (r, t ) =
j
Σ [(θγT )j (r) θ̂ + (φγT )j (r) φ̂]

×
sj

1 − e −sj t
_ _______ (39)

where

(φγT )j (r) = y 1(r ,−sj )
m =1
Σ
2 

 Σm +3(φ,s ) ∂θXl
m(θ) (−1)m 

 εj
−1

(θγT )j (r) = y 1(r ,−sj )
m =1
Σ
2 

 − ∂φΣm +3(φ,s ) Xl
m(θ) (−1)m 

 εj
−1 (sinθ)−1 (40)

(2) Comments on Numerical Integration Method

Accurate calculation of postseismic relaxation fields depends on having an accu-

rate method of integration of (17). The upward integration of (17) and application of

surface boundary conditions may always be done stably in the toroidal mode case, but

in the spheroidal mode case it is often an unstable process due to numerical dispersion

which transforms linearly independent vectors y at depth into nearly linearly dependent

vectors at the surface. Integration schemes which ignore this effect can suffer from

serious numerical problems. This problem must be considered in the computational

method used to calculate relaxation here because it is based upon the identification of

the characteristic decay times which form the basis of our normal mode approach. I

have found that the integration of (17) can be done straightforwardly without numeri-

cal artifacts in the nongravitational case but that it leads to serious numerical disper-

sion and resultant misidentification of decay times in the gravitational case. In order

to obtain stable results, the integration of (17) was done using the method of second-

order minors.
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In this method, originally developed by Gilbert and Backus [1966], two

displacement-stress vectors y1(r ) and y2(r ) (assuming fixed l and with the

s dependence implicit ) are propagated upward from the starting radius of integration.

The second-order minors { mj } are defined as follows [Takeuchi and Saito, 1972]

m 1(r ) = m 12 =


 y 12

y 11

y 22

y 21 


, m 2(r ) = m 13 =



 y 13

y 11

y 23

y 21 



m 3(r ) = m 14 =


 y 14

y 11

y 24

y 21 


, m 4(r ) = m 23 =



 y 13

y 12

y 23

y 22 



(41)

m 5(r ) = m 24 =


 y 14

y 12

y 24

y 22 


, m 6(r ) = m 34 =



 y 14

y 13

y 24

y 23 


,

The minor m 6 is actually proportional to m 1 [Takeuchi and Saito, 1972]:

m 6 = −
l (l +1)

1_ _____ m 1

The differential equation (17) for these two displacement-stress vectors can be rewrit-

ten as a 5×5 system for the minors. Defining m as the column vector with com-

ponents mj ( j = 1 through 5), this equation takes the form (in layer ν)

dr
d m(r )_ ______ = A  ν m(r ) (42)

subject to the surface boundary condition

m 5(R ) = 0 (43)

The elements of A  ν are linear combinations of the elements of Aν and can be derived

explicitly by combining (17) and (41) to rewrite (42) in the form

dr

dmjk (r )_ _______ =
k
Σ (Aν)jl mlk + (Aν)kl mjl (44)

Integration of (42) subject to the boundary condition (43) is necessary to obtain stable

results in many applications in propagating wave seismology [Woodhouse, 1980;

Friederich and Dalkolmo, 1995]. Its use here in the quasi-static deformation case is a

natural extension of the methods given in those papers.
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(3) Number of Mode Branches

Toroidal Modes

The free surface boundary condition (35) can be written in the form

j =1
Π
M

(s + sj ) = 0 (45)

It can be proven [Pollitz, 1992] that all s = −sj must lie on the negative real axis, so

M equals the number of characteristic decay times. Consider the set of layer boun-

daries dividing a viscoelastic spherical shell (i.e., one with finite η) from distinct

purely elastic material above or below it. Let M 1 be the number of such boundaries,

and let M 2 be the number of distinct homogeneous spherical shells with a Maxwell

viscoelastic rheology (assuming for the moment that none of them possess a standard

linear solid rheology). Then

M = M 1 + (M 2 − 1) (46)

If the Earth model possesses at least one spherical shell with a standard linear solid

rheology, then the number of zeros generally increases. Redefine M 2 to be the number

of distinct homogeneous spherical shells with a viscoelastic rheology, inclusive of both

a Maxwell viscoelastic and standard linear solid rheology. Let M 3 be the number of

distinct homogeneous spherical shells with a standard linear solid rheology, and let M 4

be the number of layer boundaries dividing a spherical shell with Maxwell viscoelastic

rheology from one with a standard linear solid rheology. Then

M = M 1 + (M 2 − 1) + (M 3 + M 4 − 1) (47)

Spheroidal Modes

The free surface boundary condition (18) can also be written in the form (45). Define

M 1, M 2, M 3, and M 4 as above. If all viscoelastic layers have a Maxwell viscoelastic

rheology, then
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M = 3 M 1 + 4 (M 2 − 1) (48)

If the Earth model possesses at least one spherical shell with a standard linear solid

rheology, then

M = 3 M 1 + 4 (M 2 − 1) + 2 (M 3 + M 4 − 1) (49)

It is interesting to note, in both the toroidal and spheroidal mode cases, that if the

Earth model contains a single viscoelastic layer bounded above and below by purely

elastic material, then the number of zeros M of (45) is independent of whether that

layer possesses a Maxwell viscoelastic or a standard linear solid rheology -- if the

layer is standard linear solid, then M 3 = 1 and M 4 = 0, so M 3 + M 4 − 1 = 0, and there

is no difference in M between equations (46)/(47) or (48)/(49).
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(4) Validation

There are numerous factors which contribute to computed postseismic deforma-

tion for a given source: the discretization of the fault plane(s), the cutoff wavelength

(equivalently, l max), the eigenfunction interpolation scheme, and the starting radius

of integration of the radial eigenfunctions (equations (17) and (34)). In addition

there is the implicit assumption that the propagator matrices Pν used to construct the

solution are correct.

The reliability of the theory and computations (non-gravitational case) are

tested by comparison with independent semi-analytical and analytical results.

(1) Relaxation following strike-slip faulting on an infinitely long fault. The ana-

lytic solution to this problem on a homogeneous half-space is known (Savage and

Prescott, 1978). To simulate this we construct a viscoelastic structure that has uni-

form elastic parameters (rigidity µ and Poisson’s ratio 0.25) and an upper elastic

shell underlain by an asthenosphere of viscosity η. We implement a very long vert-

ical fault (length 1500 km) penetrating the entire elastic plate of thickness H =30

km. The maximum degree l max used in this (and subsequent) examples is chosen

such that 2πR ⁄ l max = (2⁄ 3) × H (R is Earth’s radius). With y denoting the fault-

parallel Cartesian coordinate and U the coseismic slip, we evaluate uy ⁄ U at times

t =1τ0 and t =2τ0, where τ0 = η ⁄ µ is the material relaxation time of the astheno-

sphere. Figure 2 demonstrates that the mode sum computed by VISCO1D matches

the analytic solution very well.

(2) Relaxation following dip-slip faulting on a finite fault. We again construct a

viscoelastic structure that has uniform elastic parameters (rigidity µ and Poisson’s

ratio 0.25) and an upper elastic shell of thickness H underlain by an asthenosphere

of viscosity η. A finite fault that ruptures a very small portion of the elastic plate (at

depth 0.786×H ) is prescibed length 20H ⁄3, rake 90˚, and variable dip. We shall

compare the mode sum with the "Direct Greens Function" (DGF) evaluation. In this
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method, we implement the source directly using jumps in the displacement-stress

vector at the source radius. In detail, we take the solution for static displacement on

a spherically layered elastic model (Pollitz, 1996), change the shear modulus in the

asthenosphere to a s −dependent modulus using the correspondence principle, and

then evaluate the coseismic and postseismic displacements using a numerical inverse

Laplace transform. Since the DGF method yields the coseismic displacement in

addition to the postseismic displacement, we can also compare the DGF coseismic

displacements with those computed analytically (e.g., Okada, 1992).

Let x and z be horizontal and vertical Cartesian coordinates (x measuring hor-

izontal distance from the fault). Figures 3 through 5 show comparisons between the

DFG solution and Okada solution for the coseismic displacement field along a

profile that bisects the fault. Figures 6 through 8 show comparisons of post-

thrusting relaxation between the mode sum and DGF solution. The comparison with

the analytic coseismic displacments shows essentially that the DFG method imple-

ments the source correctly (and this point is made for several other cases in Pollitz,

1996) and that the program that carries out the DGF method is integrating along the

fault plane correctly. These comparisons further suggest that the layer matrices used

in the DGF method are correctly specified (both in theory and practice). In turn,

since the static solution of the DGF method is constructed from the same layer

matrices Pν as those employed in the viscoelastic normal mode solution, we gain

confidence in that part of the viscoelastic normal mode solution.

Figure 6 through 8 show very good agreement between the DGF solution and

viscoelastic normal mode solution. I attribute slight differences to the numerical

inverse Laplace transform used in the DGF method. The DGF method implements

the source directly and does not identify the poles of the deformation functions in

the Laplace transform domain. It computes Laplace-transformed deformation at a

number of sample points in the complex s −plane and then estimates the excitation
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of a number of decaying exponential functions corresponding to poles at specified

collocation points on the negative real s −axis. The viscoelastic normal mode solu-

tion, on the other hand, identifies the poles of the Laplace-transformed deformation

explicitly and evaluates their contributions analytically. The near-perfect agreement

between the two very different methods demonstrates that VISCO1D is handling

essentially all aspects of the post-thrusting case correctly.

It is noteworthy that the post-thrusting case from a finite fault (case 2 above)

has dominant contributions from the spheroidal model deformation field, whereas

the post-strike-slip case for an infinitely long fault (case 1 above) has contributions

exclusively from the toroidal mode deformation field. The comparison-results in

these two cases jointly show that each of the separate toroidal and spheroidal com-

ponents of the postseismic deformation field are being computed reliably.
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(5) Organization of the Programs

All source code for the viscoelastic relaxation programs and several examples

for calculating postseismic deformation are in the /viscoprogs directory.

The programs are organized as follows:

Purpose  TOROIDAL  SPHEROIDAL
 MOTION  MOTION
 program  program

_______________________________________________________
Determine characteristic  
decay times  decay  decay4 or { decay4m,decay4g}
_______________________________________________________
Determine  
corresponding  vtordep  vsphdep or { vsphg}
eigenfunctions  
_______________________________________________________
Determine time-dependent  
postseismic velocity or  
cumulative postseismic  strainx  strainw
displacement for  
specified fault  
plane(s) & observation  
points  
_________________________________________________________________

Comments:

1. DECAY and DECAY4 have a common standard input file which specifies the

minimum and maximum spherical harmonic degree used in the deformation

field expansion. They both read in viscoelastic stratification and other informa-

tion about the Earth model from an input file called ’earth.model’, as described in

the examples in the Tutorial. For each spherical harmonic degree, the programs find

zeros s = − sj of a function (equation (18) for spheroidal modes; equation (35) for

toroidal modes) by dividing the negative s −axis into numerous short segments and

systematically searching for zero crossings of this function.

2. VTORDEP and VSPHDEP read in files created previously by DECAY and

DECAY4, respectively, as well as the depth at which deformation results are to
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be calculated from standard input. VTORDEP obtains and writes out the eigen-

functions y 1(r ,−sj ) and ∂r y 1(r ,−sj ) (section 1.2), and VSPHDEP obtains and writes

out the eigenfunctions y 1(r ,−sj ), ∂r y 1(r ,−sj ), y 3(r ,−sj ), ∂r y 3(r ,−sj ) (section 1.1),

over the depth range originally specified in ’earth.model’.

3. STRAINX and STRAINW read in files created previously by

{ DECAY,VTORDEP} and { DECAY4,VSPHDEP} , respectively, and they read from

standard input the number of fault planes, geometry and slip of each fault

plane, location of observation points, time of earthquake, whether postseismic

velocity at one time or cumulative postsesimic displacement between two times

is desired, and start/end time of deformation to be evaluated (needed if cumula-

tive displacement is desired). Either surface deformation or deformation at a

specified depth can be calculated.

4. STRAINX and STRAINW divide each fault plane into (nmesh1-1) X (nmesh2-1)

nonoverlapping rectangles, with nmesh1 and nmesh2 specified in the source code

’strainx.f’ and ’strainw.f’. When the fault dips 90 deg. then it saves a lot of time to

set nmesh1=2 in these programs, but when a fault does not dip 90 deg. then nmesh1

should be large enough that the fault is well divided in the along-dip direction.

Similarly, nmesh2 should always be chosen so that the fault is well divided in the

along-length direction. I end up changing these values for almost every application,

and I typically choose nmesh1 and nmesh2 so that the separation between adjacent

rectangles is a fraction of the elastic plate thickness; what values to choose is worth

considering because computation time is proportional to (nmesh1-1) X (nmesh2-1).

The maximum value of nmesh1 which should be used is 41.

5. The final output of STRAINX and STRAINW has all three components of dis-

placement (or velocity) and all six components of the strain (or strain rate) tensor at

all of the specified observation points.
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6. The programs described above handle the non-gravitational case. Programs

DECAY4M, DECAY4G, and VSPHG are needed for the gravitational case. Most

examples given in the Tutorial use only the nongravitational programs because they

generally run much faster than the gravitational programs.

7. One of the input parameters in the algorithm is Earth’s radius. It is allowed to

be variable in the non-gravitational programs. In the spherical harmonic summation

method which is employed, using a radius smaller than Earth’s true radius (6371

km) can speed things up considerably because, for a given cutoff wavelength, a

smaller maximum spherical harmonic degree can then be used. There are two issues

involved with using any radius < 6371 km. First, one should be sure that sphericity

effects are not important for the problem at hand (this can be addressed by experi-

menting with different radius values). One of the consequences of using a smaller

radius is that programs STRAINX and STRAINW will then assume that a point A

(i.e. source) - point B (i.e. observation point) azimuth evaluated locally at point A

exactly equals the negative of the point B - point A azimuth evaluated locally at

point B. The former is needed to describe the directivity of the various source exci-

tation functions at point A, while the latter is needed to rotate spherical strain com-

ponents into local Cartesian strain components at point B. If sphericity effects are

significant enough that the above equality does not approximately hold, then use

radius = 6371 km. Second, the gravitational programs DECAY4M, DECAY4G, and

VSPHG must be run with radius = 6371 km.
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(6) Troubleshooting

This program package has yielded extremely stable results in all simulations

which I have attempted over the past several years. Nevertheless, when I occasion-

ally overstep the bounds intended for the programs, I will encounter wildly inexpli-

cable results (i.e., overflow, segmentation errors) before I discover the mistake.

Below I give a few examples that should cover most of the potential problems.

1. Overflow is encountered when running DECAY or DECAY4 or DECAY4M, and

the overflow yields NaN in output files. The most common reason for this is that

one or more layer thicknesses in ’earth.model’ is too large. Both DECAY and

DECAY4 work with analytical layer matrix solutions for elastic deformation within

each layer, and these solutions behave as ∼ (r ⁄r 0)±l , where r 0 is a reference radius

for that layer. If the ratio of the top to bottom radius of the layer is too large, and

the spherical harmonic degree number l is sufficiently large, then overflow will

result. The solution is to subdivide the (largest) layers in ’earth.model’ into smaller

layers.

2. Extremely large deformation values or segmentation errors are encountered when

running STRAINX or STRAINW. This most likely results when more than 4 dis-

tinct viscoelastic layers are specified in ’earth.model’ (several consecutive layers

with identical elastic and viscoelastic parameters count as 1 "distinct" layer). This

generates potentially more than 4 distinct relaxation times per spherical harmonic

degree for toroidal modes, and more than 15 distinct relaxation times per spherical

harmonic degree for spheroidal modes. If this is the problem, then either (1) limit

the number of distinct viscoelastic layers to 4 or fewer, or (2) manually change the

value of the parameter maxmod to a greater value in vtordep.f, strainx.f, vsphdep.f,

and strainw.f
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3. Other problems may be encountered if the following limits are exceeded:

(1) Do not use more than 100 total layers in ’earth.model’

(2) Do not evaluate deformation for more than 1600 points at a time (i.e., number

of observation points in input file to STRAINX, STRAINW).

(3) Do not evaluate deformation for more than 150 fault segments at a time (i.e.,

number of fault segments in input file to STRAINX, STRAINW).

(4) Do not use a value of nmesh1 greater than 41 in strainx.f or strainw.f

(5) Do not use a spherical harmonic degree less than 2 or greater than 2500 (i.e.

l min and l max in input file to DECAY or DECAY4 or DECAY4M).

(6) Always use Earth radius=6371 km in ’earth.model’ when the gravitational

programs DECAY4M, DECAY4G, and VSPHG are used.

4. Too few mode branches seem to be found by DECAY or DECAY4 (or

DECAY4M). This occurs for a good reason at larger spherical harmonic degrees l .

Because the intended applications involve shallow earthquake sources, the equations of

static equilibrium are integrated upward starting from a nominal starting radius --

about 2 wavelengths deep (if Earth’s radius is 6371 km and l = 1000, then one

wavelength is 40 km, so numerical intergration is begun 80 km down, with a lower

boundary condition corresponding to homogeneous material below that depth). This

means that any modes found will be insensitive to depth-varying elastic or viscoelastic

structure deeper than 80 km. It is clear from the mode counting formulas (section 3)

that, if there is depth-varying structure below 80 km depth, then a number of mode

branches will "fall out" at this particular l as a result. Because the seismic source is

shallow, however, the missed modes correspond to local deformation near a deep

boundary, with very small eigenfunctions at the source depth, so that the source excita-

tion functions Σm (equations 16 and 32 of section 1) are extremely small. Another

reason that mode branches may be missed is that the search for zeros of the surface

boundary condition (equation 45 of section 3) may use steps in the s -domain which
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are too large, causing the program(s) to skip over 2 closely-spaced mode branches

altogether. If you suspect that this is the case, then manually change the value of

"nfrac(1)" in decay.f, decay4.f, and/or decay4m.f to a larger value (the computation

time will correspondingly increase).


