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[1] We provide an explanation why earthquake occurrence does not correlate well with
the daily solid Earth tides. The explanation is derived from analysis of laboratory
experiments in which faults are loaded to quasiperiodic failure by the combined action of a
constant stressing rate, intended to simulate tectonic loading, and a small sinusoidal stress,
analogous to the Earth tides. Event populations whose failure times correlate with the
oscillating stress show two modes of response; the response mode depends on the
stressing frequency. Correlation that is consistent with stress threshold failure models, e.g.,
Coulomb failure, results when the period of stress oscillation exceeds a characteristic time
tn; the degree of correlation between failure time and the phase of the driving stress
depends on the amplitude and frequency of the stress oscillation and on the stressing
rate. When the period of the oscillating stress is less than tn, the correlation is not
consistent with threshold failure models, and much higher stress amplitudes are required
to induce detectable correlation with the oscillating stress. The physical interpretation
of tn is the duration of failure nucleation. Behavior at the higher frequencies is consistent
with a second-order dependence of the fault strength on sliding rate which determines
the duration of nucleation and damps the response to stress change at frequencies greater
than 1/tn. Simple extrapolation of these results to the Earth suggests a very weak
correlation of earthquakes with the daily Earth tides, one that would require >13,000
earthquakes to detect. On the basis of our experiments and analysis, the absence of
definitive daily triggering of earthquakes by the Earth tides requires that for earthquakes,
tn exceeds the daily tidal period. The experiments suggest that the minimum typical
duration of earthquake nucleation on the San Andreas fault system is �1 year. INDEX

TERMS: 1249 Geodesy and Gravity: Tides—Earth; 7209 Seismology: Earthquake dynamics and mechanics;

7215 Seismology: Earthquake parameters; 8010 Structural Geology: Fractures and faults; 8159

Tectonophysics: Rheology—crust and lithosphere; KEYWORDS: earthquake probability, stress triggering,

earthquake nucleation

Citation: Beeler, N. M., and D. A. Lockner, Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress

on the rate and probability of earthquake occurrence, J. Geophys. Res., 108(B8), 2391, doi:10.1029/2001JB001518, 2003.

1. Introduction

[2] If increases in static stress trigger earthquakes [e.g.,
Stein, 1999], why do the solid Earth tides not trigger
earthquakes [Cotton, 1922; Klein, 1976; Heaton, 1982]?
Tidal forces exerted by the Moon and Sun produce contin-
uously varying stresses in the Earth’s crust with daily
maximum shear stressing rates that are 2 orders of magni-
tude larger than the rate of accumulation of stress along
active faults due to plate motion [Heaton, 1982]. If faults
failed at a threshold level of stress, e.g., a Coulomb failure
criterion as assumed in studies of static stress triggering,
earthquake rates would correlate directly with the stressing
rate and therefore with Earth tides [e.g., Heaton, 1982;

Lockner and Beeler, 1999]. In contrast, careful analyses of
quality data sets suggest little or no correlation between
Earth tides and earthquakes [e.g., Vidale et al., 1998].
Apparently a threshold failure criterion does not completely
characterize earthquake failure. This conclusion is sug-
gested by other seismological observations; for example,
in studies of static stress change, stress increases of less
than 0.01 MPa show no correlation with increased seismic-
ity [e.g., Reasenberg and Simpson, 1992; Simpson and
Reasenberg, 1994; Hardebeck et al., 1998].
[3] As for natural faults, the laboratory fault failure

criterion is not a threshold [Johnson, 1981]. The primary
characteristics of failure on laboratory-scale faults are
shown in Figure 1a:
[4] 1. For faults loaded at a constant rate VL, measurable

fault slip d accrues prior to failure. Such slip leads to a
deviation from a linear (elastic) increase in shear stress t
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with time t; shear stress on the fault is t = k(VLt � d), where
k is the combined stiffness of the experimental apparatus
and the sample.
[5] 2. Peak stress occurs prior to failure indicating no

instantaneous threshold failure stress.
[6] 3. Failure is delayed; there is lag time between the

onset of detectable slip (tonset), or the time of peak stress
(tpeak), and the time of failure (tfail), defining a measure of

the duration of nucleation, e.g., tn = tfail � tonset. In experi-
ments conducted by Lockner and Beeler [1999] loaded at
VL = 0.1 mm s�1, tn measured in this approximate way is
100–800 s, and during nucleation the sliding velocity
increases monotonically until failure is reached (Figure 1b)
[Dieterich, 1992]. As we will argue later in this paper,
understanding the origin of this delay is key to understand-
ing why earthquake occurrence correlates weakly with small
stress changes such as the solid Earth tides. Delayed failure
is also manifest in another long-known and related phe-
nomenon known in mechanical engineering, material sci-
ence, and rock mechanics as ‘‘static fatigue,’’ an inherent
time delay between the application of a stress increase and
the occurrence of rock failure, or the occurrence of an
unstable stress drop, induced by the stress change [e.g.,
Griggs, 1936; Scholz, 1972; Kranz, 1980].
[7] That the largely uncorrelated response of natural

seismicity to tidal stress might be an additional consequence
of time-dependent or delayed failure has been noted previ-
ously. On the basis of early experiments on static fatigue
Knopoff [1964, p. 1869] suggested that stress increases
equivalent to the tidal stress amplitude would induce failure
following a delay of months or even years. He concluded
that earthquakes would not correlate with periodic stressing
of such small amplitude. Similarly, Rydelek et al. [1992,
p. 133] concluded that the lack of correlation between
earthquake occurrence and the tides indicates that failure
is intrinsically time-dependent with a characteristic time
greater than the tidal period. To establish a direct connection
between delayed failure and the absence of tidal triggering,
Lockner and Beeler [1999] undertook a systematic study of
the sensitivity of failure time to periodic stressing. Earth-
quake catalogues were generated using laboratory-scale
faults undergoing quasiperiodic failure, ‘‘stick-slip’’, which
is the laboratory equivalent of the earthquake cycle [Brace
and Byerlee, 1966]. Faults were stressed to failure by the
combined action of a constant loading rate and a small-
amplitude periodic stress. Lockner and Beeler [1999] ob-
served a strong correlation between the periodic stress and
the occurrence of failure at shear stress amplitudes above
approximately 0.3 MPa. As the periodic forcing amplitude
decreased, the correlation of failure with the periodic stress
also decreased to the degree that below amplitudes of
0.1 MPa, confidence that events were correlated was reduced
to less than 60% for catalogs of approximately 20 events.
Their qualitative interpretation of these observations is that
the process(es) responsible for the characteristic delay of
failure damps the response of faults to small amplitude stress
perturbations. They concluded that the small amplitude of
the tidal stress in the Earth generates weakly correlated
seismicity and predicted that approximately 1% of earth-
quakes should correlate with the daily tides.
[8] In the present study we further analyze and model the

previous experimental results of Lockner and Beeler [1999].
Our analysis reveals two modes of response of laboratory
fault populations to periodic stress: a correlated response
consistent with simple threshold models such as Coulomb
failure, and a different response where expected correlation
is significantly suppressed. The former response is observed
when the periodic component of the forcing stress exceeds a
critical duration. We note that the critical duration or critical
time is expected based on previous rock deformation experi-

Figure 1. Stick-slip. (a) Frictional stress, m the ratio of
shear stress t to normal stress sn, versus time during sliding
between initially bare surfaces of Westerly granite at room
temperature, 50 MPa confining pressure, and 0.1 mm s�1

loading velocity. The onset of detectable slip (tonset) occurs
when stress deviates from the dashed elastic loading curve.
The onset of detectable slip and the peak stress (tpeak) differ
from the failure time (tfail). The delay between the onset of
detectable slip and the eventual failure time is �180 s.
(b) Acceleration to failure during slip of a fault in granite at
room temperature and 50 MPa confining pressure. Data
from five successive failure events in the test shown in
Figure 1a [after Dieterich and Kilgore, 1996]. The reference
line has a slope of �1. Sliding velocity increases as failure
is approached. The duration of nucleation is �700 s. The
peak stress is reached when the sliding velocity reaches VL

(horizontal dashed line). At all times prior to peak strength,
the sliding velocity is increasing while the fault strength is
increasing (Figure 1a), indicating that strength has positive
rate dependence.
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ments and that it corresponds with the duration of nucle-
ation (Figure 1). To extrapolate our particular laboratory
observations, we develop formal expressions for the prob-
ability that a population of N earthquake failure times are
correlated with a periodic stress for both observed response
modes. By assuming that natural earthquake failure is
similar to our experiments, we predict the number of events
required to detect a correlation between earthquakes and the
tides and compare the predictions with seismological obser-
vations. By extrapolating the laboratory observations we
also estimate the critical time expected under natural rates of
tectonic stressing.

2. Experiments

[9] The experiments of Lockner and Beeler [1999] were
conducted on saw cut fault surfaces of Westerly granite
inclined 30� to the cylindrical sample axis (Figure 2).
Samples were deformed in a triaxial loading frame at
constant confining pressure of s2 = s3 = 50 MPa, where
the greatest, intermediate, and least principal stresses are
s1, s2, and s3, respectively. The constant axial shortening
rates imposed are equivalent to sliding rates of VL = 0.001,
0.01, or 0.1 mm s�1 resolved onto the fault surface. The
constant loading rate was modulated by a sine wave with a
frequency range f of 10�4 to 10�1 Hz and an amplitude U,
resulting in loading displacement of the form dL = dL0 +
VLt + U sin ft, where dL0 is the displacement at t = 0.
Amplitudes of the oscillating component result in 0.042 to
0.7 and 0.025 to 0.41 MPa changes in shear and normal
traction, respectively, resolved on the fault surface. Pres-
sure, axial load, and displacement were recorded at a rate
of one sample per second in the VL = 0.1 mm s�1

experiments and averaged to as much as 5 s intervals in
the VL = 0.001 mm s�1 experiments. At each combination
of loading rate, frequency and amplitude, approximately
20 failure events were recorded (Table 1); this is a
sufficient statistical sampling to identify strong correlation
between the periodic stress and failure time. Further details
of the experimental procedures and fault surface prepara-
tion are given by Lockner and Beeler [1999].

3. Event Catalogs From the Experiments

[10] A typical event population consists of �20 failure
events recorded within <13 mm total axial displacement
(Figure 3). There are event to event variations in the stress
drop and in the peak failure stress which result from
displacement or time-dependent changes in frictional
strength. While these variations clearly influence the time
of failure, such variations produce no correlation between
the failure time and the phase of the oscillating stress (see
Figure 4 and discussion below). For each amplitude, fre-
quency and loading velocity combination we record the
angular phase q = 2pft of the oscillating stress at the
occurrence time of each failure event. Since a sine function
is used, a failure event occurring at the peak in the cyclic
loading displacement or stress occurs at q = p/2.
[11] The resulting sequence of failure events can be

treated as a random walk in which each event results in a
unit length step in the direction defined by its phase angle
(Figure 4). If the sequence is random, the procession will

wander an average distance D =
p
N from the origin, where

N is the number of events. Schuster [1897] and Rydelek and
Hass [1994] developed a simple expression for the proba-
bility Prw that a random walk will end within a given
distance D from the origin;

Prw ¼ exp �D2=N
� �

: ð1Þ

Figure 2. Experimental geometry. (a) Sample containing a
fault inclined to the loading axis s1, loaded under triaxial
conditions, s1 > s2 = s3 equal to confining pressure. (b) An
inclined spring and slider block representation of Figure 2a
[after Linker and Dieterich, 1992; He and Ma, 1997]. The
stiffness k used in analysis in this paper is the effective
stiffness in the fault-parallel direction, given by k = kLsin

2 b
cos b [Walsh, 1971; He and Ma, 1997], where kL is the
stiffness in the axial direction and b is the complement of the
angle f between the sample axis (s1 direction) and the fault
plane; dL is the load point displacement in the axial direction
and dL0 is the load point displacement associated with k; s3
is constant, consistent with the experimental geometry.
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A population containing a nonrandom component, i.e., one
that is correlated with the phase of the periodic stress, will
tend to produce a value of D larger than

p
N. We have

determined Prw for all populations (Table 1). An experiment
with zero amplitude produced a population that is not
correlated (Figure 4, labeled 0 MPa), whereas nonzero
amplitude populations show systematic variations in the

degree of correlation with amplitude and frequency. The
quantity 1 � Prw (Table 1) expresses the probability that a
sequence of failure events does not occur at random phases.
At all frequencies the largest amplitude populations show
strong correlation between failure time and the phase of the
periodic stress, and in all cases we were able to reduce the
amplitude until the occurrence of failure could no longer be
distinguished from random. Figure 5 shows the (1 � Prw) =
99.5% confidence level bounding populations with strong
correlation between failure time and the periodic stress. In
general, for each frequency the larger-amplitude stresses are
better correlated than smaller-amplitude stresses.
[12] For comparison with subsequent model calculations,

each population can be displayed as a probability distri-
bution, for example, as shown in Figure 6. In Figure 6 the
left-hand axis is angular probability density (rad�1). The
right-hand axis is the periodic component of stress which
is shown for direct comparison with the probability den-
sity. The correlated populations have an approximately
sinusoidal distribution with the same period as the driving
stress; the amplitude of the distribution reflects the degree
of correlation. On the basis of the form of the distribution
and the lack of correlation in the zero amplitude popula-
tion (Figure 4), we assume that the imposed stressing
results in a purely random component P0, due to the

Table 1. Summary of Experimental Event Catalogs of Lockner

and Beeler [1999]a

Exp LB99 N f, Hz
VL,

mm s�1
�tu,
MPa Prw 1 � Prw Pm/P0

5a a10 15 0.01 0.1 0.183 0.0214 0.979 0.94
6a a12 10 0.01 0.1 0.359 0.0026 0.997 1.43
8a 18 0.01 0.1 0.042 0.2599 0.740
8b a09 18 0.01 0.1 0.092 0.389 0.611 0.42
9a a08 16 0.05 0.1 0.381 0.004 0.996 1.09
11a a07 23 0.05 0.1 0.170 0.463 0.537 0.34
11b a04 22 0.05 0.1 0.099 0.640 0.360 0.27
12a 18 0.05 0.1 0.056 0.413 0.587
13a a14 25 0.002 0.1 0.342 0.003 0.997 0.89
14a a15 17 0.002 0.1 0.711 1. e�5 1.000 1.51
15a a11 20 0.01 0.1 0.359 0.004 0.996 0.98
16a a03 35 0.1 0.1 0.651 7. e�6 1.000 1.08
17a a02 27 0.1 0.1 0.265 0.006 0.994 0.81
17b a01 15 0.1 0.1 0.153 0.311 0.689 0.52
19a_d b11 13 0.0004 0.01 0.688 0.001 0.999 1.17
19b_c b10 12 0.0004 0.01 0.362 0.001 0.999 1.51
20a b09 19 0.0004 0.01 0.127 0.0001 1.000 1.17
20b_c b08 30 0.0004 0.01 0.094 0.038 0.962 0.58
21a_b b12 20 0.0001 0.01 0.171 0.007 0.993 0.96
22_27 c01 20 0.02 0.0001 0.083 0.660 0.340 0.27
24a a06 23 0.05 0.1 0.206 0.473 0.527 0.33
25 a05 24 0.05 0.1 0.104 0.507 0.493 0.33
26a a13 23 0.002 0.1 0.171 0.863 0.137 0.22
28a_b b04 24 0.004 0.01 0.0888 0.333 0.666 0.41
30 b01 20 0.04 0.01 0.213 0.611 0.389 0.29
31 b05 19 0.004 0.01 0.168 0.194 0.807 0.55
32 b02 27 0.04 0.01 0.265 0.030 0.970 0.69
33 b06 26 0.004 0.01 0.198 0.370 0.630 0.35
34 b07 28 0.004 0.01 0.638 6. e�6 1.000 1.21
35 b03 22 0.04 0.01 0.668 0.002 0.998 1.01

aExp, experiment; LB99, Lockner and Beeler [1999].

Figure 3. Friction m, the ratio of shear stress t to normal
stress sn on a fault, versus time for the entire sequence of
stick-slip events at 50MPa confining pressure and 0.1 mm s�1

loading velocity in the experiment shown in Figure 1.

Figure 4. Examples of random walks of failure phase
from three experiments from Lockner and Beeler [1999].
Displacement oscillation amplitudes U were 0, 2.8, and
5.5 mm (0, 0.17, and 0.35 MPa shear stress). Frequency of
oscillation f was 0.05 Hz. The largest amplitude sequence
showed a strong bias for events to occur with a phase of 70�
(20� before peak stress). The possibility that this sequence
of events could occur by random chance can be rejected at
the 99% confidence level using equation (1). Both the zero
amplitude and 2.8 mm sequences remained well within the
limits expected for a random process. Presumably, a longer
sequence of 2.8 mm amplitude events would begin to show a
nonrandom drift similar to the 5.5 mm sequence.
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steady loading ( _t / VL), and a periodic component Pp

with the same frequency as that of the periodic stress.
Were the probability density (PDF) a perfect sine wave,

P qð Þ ¼ P0 þ Pp ¼ P0 þ Pmsin q� fsð Þ; ð2Þ

is the appropriate representation [Lockner and Beeler,
1999]. Here P0 is the average value of the PDF and
represents the uniform probability, a strictly Poissonian

occurrence of events. Parameters Pm and fs are the
amplitude and phase shift, respectively, of the periodic
component of the PDF. As the distributions are approx-
imately sinusoidal (Figure 6), we use equation (2) to
empirically quantify the degree of correlation. Because
of the small event numbers, the probability distributions
(e.g., Figure 6) were smoothed using a procedure de-
scribed by Lockner and Beeler [1999]. These smoothed
PDFs were then fit with the sinusoid (equation (2)) to
determine the amplitude Pm. The ratio Pm/P0, the ampli-
tude of the distribution normalized by the average or
random component, is a useful measure. Values greater

Figure 5. Summary plot of all event populations. (a) Each
symbol represents a population of �20 failure events which
were loaded at a constant rate VL = 0.1 mm s�1 and which
experienced an oscillating stress of amplitude and period
indicated by the figure axes. Solid symbols are populations
whose Schuster probability (1 � Prw) > 99.5%, equation (1),
indicating a high degree of correlation between the phase at
failure and the phase of the oscillating component of the
loading stress. Open symbols are populations whose Schuster
probability (1 � Prw) < 99.5%. (b) Same as Figure 5a except
for VL = 0.01 mm s�1.

Figure 6. Example probability density distributions. (a) A
histogram of the distribution of events with respect to the
phase of the oscillating stress component. This population
experienced a loading velocity VL = 0.1 mm s�1 and an
oscillating stress of amplitude and period U = 5.5 mm and
tw = 20 s, respectively (dotted). This example is typical of
the response of experimental faults to short-period stressing.
The histogram is expressed as a probability density, and this
example is statistically correlated with the driving stress
using either equation (1) or equation (2). Note that the
highest angular seismicity rate coincides with the highest
stress. (b) Same as Figure 6a except for loading velocity
VL = 0.1 mm s�1 and stress amplitude and period U = 5.4 mm
and tw = 500 s, respectively. This example is typical of the
response of experimental faults to long-period stressing.
Note that the highest angular seismicity rate coincides with
the highest angular stressing rate, in contrast to the case
shown in Figure 6a.
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than one indicate that the correlated response dominates
failure. Small, nonzero values of Pm/P0 indicate condi-
tions under which only a weak correlation exists between
the periodic stress and failure. The shape of the contour
of Pm/P0 bounding correlated and uncorrelated popula-
tions (Figure 7) is similar to the analogous Schuster
probability contour (Figure 5).

4. Rate and Probability of Earthquake
Occurrence

[13] In the subsequent section 5 of this paper, we use
specific models of failure to simulate the laboratory popula-
tions and generate synthetic probability densities analogous
to the histograms shown in Figure 6. Then, we relate those
probability densities to the overall probability that a popula-
tion of simulated event failure times is influenced by the
periodic stress. To define the probability we first develop a

general description of earthquake rate and apply it to the case
of interest, populations whose failure times have both a
purely random component and a periodic component.
[14] Consider a set of seismic source faults that is subject

to a constant background stressing rate, resulting in a
constant failure rate ro (seismicity rate). The population of
earthquakes occurring on the faults is numbered n = 1 to NT,
and ordered by increasing time of failure. The reciprocal of
the background seismicity rate is 1/ro = �tb/�n, where tb
is the failure time of an event due to the background load
alone. The addition of a small oscillating stress can cause the
failure time of each event to be increased or decreased by an
amount tc = tb � t where tc is the clock advance (positive
values indicate that failure time is advanced, and t is time of
failure). The reciprocal rate as a function of time is

1

r
tð Þ ¼ 1

ro
��tc

�n
tð Þ: ð3Þ

Equation (3) can be rearranged and expressed as the
seismicity rate

r tð Þ ¼ ro

1� ro
�tc

�n
tð Þ
¼ ro

1� �tc

�tb
tð Þ
: ð4Þ

This approach was developed specifically for analysis of
these laboratory data sets, but it is a general formulation and
can be used to model any induced change in seismicity rate,
for example aftershocks [e.g., Gomberg et al., 2000].
Noting that t = qtw/2p, where tw is the period of the
oscillating stress, we rewrite equation (4) in a differential
form as an angular seismicity rate

r qð Þ ¼ rq0

1� dfc

dqb
qð Þ
: ð5Þ

Here qb is the phase at failure of an event due to the
background load, fc is the shift of the phase at failure
induced by the oscillating stress (positive values indicate
that failure is advanced), and q is phase at failure.
[15] For a small number of events NT occurring on a

single fault, such as in our experimental study, the average
angular seismicity rate is much less than one event per
period (1/2p). To apply lab results to the Earth we are
interested in earthquake populations consisting of the failure
of multiple faults and multiple segments of individual faults.
In this case, we assume that each individual fault in some
large fault population would respond in the same manner as
the individual faults we observed experimentally. In other
words, we assume that the onset of stress drop, regardless of
event size, ambient stress, and other external conditions, is
controlled by a process or processes common to all faults.
The angular seismicity rate in the absence of the oscillating
stress is rq0 = NT/2p. For comparison with our experimental
results we normalize equation (5) to express it as a proba-
bility density instead of an angular seismicity rate

P qð Þ ¼ 1

2p 1� dfc

dqb
ðqÞ

� � : ð6aÞ

Figure 7. Summary plot of all event populations. (a) Each
symbol represents a population of �20 failure events which
were loaded at a constant rate VL = 0.1 mm s�1 and which
experienced an oscillating stress of amplitude and period
indicated by the figure axes. Solid symbols are populations
with ratio Pm/Po > 1.0 (equation (2)), indicating a high
degree of correlation between the phase at failure and the
phase of the oscillating component of the loading stress.
Open symbols are populations whose ratio Pm/Po < 1.0.
(b) Same as Figure 7a except for VL = 0.01 mm s�1.
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Alternatively, the probability density can be expressed
without consideration of the phase shift simply as

P qð Þ ¼ 1

NT

dn

dq
qð Þ: ð6bÞ

For consistency with Lockner and Beeler [1999] and
equation (2), equation (6a) can be divided into two
components

P qð Þ ¼ Po þ Pp qð Þ ¼ 1

2p
þ

dfc

dqb qð Þ

2p 1� dfc

dqb
qð Þ

� � : ð7Þ

The first term on the right-hand side of equation (7), Po

represents the uniform probability due to the steady
background loading, and the second term Pp is the
component resulting from the periodic loading signal. Note
that when the angular seismicity rate is constant, i.e., no
periodic component, dn/dq = rq0 = NT/2p, and dfc/dqb = 0
so that equation (6a) or (7) define the average probability
density P̂(q) = Po = 1/2p.
[16] Finally, we must define the degree that a synthetic

population of events, with probability density calculated
from equation (7), is correlated with a periodic stress of
arbitrary amplitude and frequency. We use equation (1)

Prw ¼ exp �v2N
� �

; ð8Þ

with the definition v = D/N; v is the walkout velocity, that is,
the per event walkout. As follows from Schuster [1897] and
Rydelek and Hass [1994], walkout rate is defined as

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2xx þ v2yy

q
; ð9aÞ

where vxx is the walkout velocity in the x direction (q = 0)

vxx ¼
Z2p
0

P qð Þcosqdq; ð9bÞ

and vyy is the walkout velocity in the y direction (q = p/2)

vyy ¼
Z2p
0

P qð Þsinqdq; ð9cÞ

in the phase plot (Figure 4). Substituting equations (9) into
equation (8), we find

Prw ¼ exp �N

Z2p
0

P qð Þcosqdq

0
@

1
A

2

þ
Z2p
0

P qð Þsinqdq

0
@

1
A

2
2
64

3
75

8><
>:

9>=
>;:

ð10Þ

In section 5 we evaluate specific models of failure with
equations (10) and (7).

5. Analysis

[17] The summary plots of laboratory event populations
(Figures 5 and 7) suggest that there are two modes of

response of earthquakes to periodic stress (Figure 8): a
response to low-frequency stresses where the boundary
separating correlated and uncorrelated populations has neg-
ative slope, and the high-frequency response where the
boundary separating correlated and uncorrelated popula-
tions has positive slope. The boundary between the two
response modes is marked by a characteristic time tn. A
similar division of response is suggested by the individual
probability distributions of the correlated populations; the
phase corresponding to the maximum event rate occurs at
the peak loading velocity q 	 0 in the low-frequency mode
(Figure 6b) and at the peak stress q 	 p/2 in the high-
frequency mode (Figure 6a). As we show in the following
section, two response modes distinguished by a character-
istic time are expected if failure is proceeded by gradually
accelerating slip of the type widely observed in previous
rock fracture and rock friction experiments.

5.1. Threshold Failure Response at Low Frequency

[18] Coincidence of the maximum event rate and the peak
loading velocity, seen in the experimental event populations
at low frequency (Figure 6b), reflects a threshold failure
response. To illustrate this coincidence, consider a popula-
tion of faults at constant normal stress obeying the Coulomb
failure criterion, subject to periodic loading superimposed
on a constant background stressing rate. We require constant
seismicity rate in the absence of the periodic component,
and restrict the frequency f, amplitude �tu, and background
loading rate kVL = _t combinations to f�tu= _t 
 1 (no stress
reversal). Under these constraints the seismicity rate and the
probability density are proportional to the loading rate
[Lockner and Beeler, 1999], and P(q) (equation (7)) has
an analytical solution

P qð Þ ¼ 1

2p
þ�tu

_ttw
cosq ð11Þ

Figure 8. Summary plot of the boundaries between
correlated and uncorrelated populations evaluated using
the ratio Pm/Po > 1.0 (equation (2)) for populations loaded
at VL = 0.1 mm s�1. Same as Figure 7a except with an
inferred division between the response at low frequency and
at high frequency. Also shown are contours (dotted) of (1 �
Prw) = 0.90, 0.75, and 0.50 from the threshold failure model
equation (12).
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where tw = f �1 is the period of the oscillating stress. To
compare simulated probabilities with our experiments, we
calculate the maximum value of the ratio Pp/P0, which is
analogous to the ratio Pm/Po from our data analysis with
equation (2). Equation (11) has a maximum value at q = 0;
thus the maximum ratio of Pp/P0, (Pp/P0)max = 2p�tu= _ttw,
and the amplitude of the probability density function is
directly proportional to amplitude of the periodic stress.
Using equation (11), equation (10) can be evaluated directly,
and we have

Prw ¼ exp �N
�tp
_ttw

� �2
" #

: ð12Þ

Contours of constant 1 � Prw calculated using equation (12)
with N = 25 and Prw = 0.1, 0.15 and 0.5 (dotted lines,
Figure 8) have a slope consistent with the boundary between
correlated and uncorrelated populations in the laboratory data
of Lockner and Beeler [1999] (heavy dashed line, Figure 8)
for low-frequency stress oscillations. However, for high-
frequencystress oscillations, theboundarybetween correlated
an uncorrelated population is much higher than predicted by
the contours of equation (12). For example, to induce a
correlation with the driving stress at the highest frequencies
in the experiments, the shear stress amplitude had to be nearly
100 times larger thanwouldbe required to induce a correlation
for a fault obeying a Coulomb failure model (equation (12)).
This indicates that laboratory fault failure is severely damped
to high-frequency stress change, and suggests that faults have
a fundamental rheological component that is lacking in
threshold failure models.

5.2. Nucleation-Dominated Response
at High Frequency

[19] Deviation of the observations from the Coulomb
model at higher frequencies (Figure 8) results from the same
rheological property that is responsible for gradual or delayed
failure (Figure 1), time-dependent failure [Griggs, 1936;Das
and Scholz, 1981], or static fatigue [Scholz, 1972; Kranz,
1980; Lockner, 1998] observed in many previous studies of
rock friction and rock failure. We now illustrate specifically
how delayed failure affects correlation between earthquake
occurrence and periodic stressing using a simple failure
model. To infer the characteristics of a model for gradual
failure we use the observed acceleration to failure from our
experiment with zero amplitude stress oscillation (Figure 1b).
Prior to the peak strength, the sliding velocity increases, and
yet the stress on the fault also increases (Figure 1a). This
requires that fault strength depends positively on sliding
velocity. The peak stress is reached when the sliding velocity
equals the loading velocity V = VL, and postpeak accelerating
slip leading to unstable stress drop is accompanied by
weakening. The weakening can be represented by slip
weakening [e.g., Okubo and Dieterich, 1986; Ohnaka et
al., 1986; Ohnaka and Kuwahara, 1990]; time-dependent
weakening is not appropriate because the duration of the post
peak delay decreases with increasing loading velocity. Thus
we infer that shear strength t = g(V, d) increases with
increasing velocity and decreases with displacement.

5.3. Slip- and Slip Rate-Dependent Failure Equation

[20] To model the onset of rapid slip at room temperature
we assume that all inelastic deformation during faulting and

the onset of rapid slip requires cooperative slip and fracture
within a localized zone. Slip may occur between asperities
on opposite sides of a fault, between particles in a fault
gouge, or on fracture surfaces. Regions which are fractured
by crack growth during deformation may be regions of
intact rock in front of a propagating rupture [Lockner et al.,
1991], interlocking asperities on preexisting fault surfaces
[Dieterich and Kilgore, 1994], or particles which form grain
bridges in gouge layers [e.g., Sammis and Steacy, 1994].
Following an approach similar to those of Mogi [1974] and
Savage et al. [1996], we describe the net shear resistance at
constant deformation rate by

t* ¼ tf
Af

A
þ ti

Ai

A
; ð13Þ

where tf is the shear resistance to slip, ti is the shear
resistance necessary to break unfractured material, A is the
initial unfractured area per unit mass across the incipient
deforming zone, and Af and Ai are the area per unit mass of
the slipping (fractured) region and the cross-sectional area
per unit mass of the unfractured portions of the fault zone,
respectively. Taking A = Af + Ai, we assume that tf < ti, and
that A is constant. During failure, weakening with
progressive slip d results from the increase of Af at the
expense of Ai. For example, for the propagation of a single
circular crack, the fractured area Af / d2. So, the fault zones
of interest are unable to sustain large shear strain without
loss of strength. Here for simplicity we assume that
fractured area increases linearly with slip Af / Cd, where
C is a constant with dimensions of length per unit mass, and
equation (13) becomes

t* ¼ ti ��t
d
d*

; ð14Þ

where we have used the definitions �t = ti � tf and d* =
A/C. Equation (14) is a slip-weakening form, previously
shown to be a useful general description of quasi-static and
dynamic material failure [Palmer and Rice, 1973; Ida,
1972].
[21] The resistance of fracture growth in virtually all

materials depends positively on the growth rate. Figure 9
shows examples of this ‘‘subcritical’’ behavior, rate data
from single cracks propagating in selected quartzofeld-
spathic materials: fused silica glass [Lawn, 1993], synthetic
quartz, and Westerly Granite [Atkinson and Meredith,
1987]. In Figure 2 the horizontal axis is crack propagation
velocity and the vertical axis is the stress intensity KI; stress
intensity is related to the remotely applied driving stress t
and to the crack length c as KI / t

ffiffiffi
c

p
. Thus fracture

propagation rate vf has an exponential dependence on stress
t [e.g., Charles and Hillig, 1962],

vf / exp t: ð15Þ

We reasonably assume that the fracture propagation rate
is directly proportional to the slip rate of the fault V, thus
the contribution of the rate dependence of fracture prop-
agation to the shear resistance of the fault zone is
t ¼ t* þ zlnV=V*, where z is a constant with dimen-
sions of stress and V* is the slip velocity when the fault
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shear resistance is t*. Combining this with equation (14),
we have

t ¼ ti þ zln
V

V*
��t

d
d*

: ð16aÞ

[22] Observations from deformation studies of rock
friction [e.g., Dieterich, 1981; Tullis and Weeks, 1986;
Blanpied et al., 1998] and failure of intact rock [e.g.,
Scholz, 1968; Lockner, 1998], over a wide range of
deformation rates, are generally consistent with equation
(16a); rock shear resistance at low temperature, and low
strain depends weakly on the rate of inelastic deformation.
Normalizing by normal stress yields a relation for friction
m = t/sn

m ¼ m* þ aln
V

V*
��t

d
d*sn

: ð16bÞ

where a = z/sn and m* = ti/sn. Note that equation (16) is
the same form as a simplification, suggested by Dieterich
[1992, 1994] as appropriate for representing the onset of
failure, of a particular rate and state variable constitutive
equation widely used in studies of rock friction and
earthquake mechanics [Ruina, 1983; Linker and Dieterich,
1992]. We have considered more complicated published

alternatives to equation (16) in detail (Appendix A) and
found no superior criterion for our purposes. However,
unlike more complicated rate and state formulations,
equation (16) does not have a steady state value of friction
and therefore cannot be used to model the effects of
periodic stressing on steadily creeping faults. Some impli-
cations of periodic normal loading for earthquake occur-
rence on creeping faults have been investigated by
Perfettini and Schmittbuhl [2001] and Perfettini et al.
[2001].
[23] In the absence of periodic loading, equation (16a)

has an analytical solution for failure time and slip velocity
prior to failure, which matches the form and gross character-
istics of the observed acceleration (Figure 1b) and delayed
failure well (Figure 10) (equation (D1)) [Dieterich, 1992].
We calculate the failure times of fault populations with fault
strengths satisfying equation (16). The faults are subjected
to oscillatory loading consistent with the experimental
conditions. Loading is coupled to the fault through an
elastic element (spring) representing the combined elastic
stiffness of the loading frame and the sample, that is t =
k(dL � d), where k is the elastic spring stiffness and dL is the
displacement of the load point of the spring. The analogous
stiffness in the Earth is proportional to the ratio of the shear
modulus and the dimension of the slipping region [Walsh,
1971]. Because there is no analytical solution for fault

Figure 9. Subcritical crack growth in quartzofeldspathic materials. Crack stress intensity KI versus
velocity for fused silica glass [Lawn, 1993], synthetic quartz [Atkinson and Meredith, 1987], and
Westerly granite [Atkinson and Meredith, 1987]. The stress intensity is proportional to the remotely
applied stress; thus the vertical axis reflects the driving stress for subcritical crack extension. Also shown
is a fit to the granite data using KI = K0 + z ln V, with z = 0.041 MPa m1/2.
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motion, a Runga-Kutta scheme with adaptive step size
control [Press et al., 1986] was used to calculate slip
numerically. Care was taken to insure that errors in numer-
ically calculated failure time do not affect the validity of our
analysis. The Runga-Kutta scheme was tested against a
linearly rate-dependent constitutive equation that has an
analytical solution for oscillatory loading. Differences be-
tween failure time calculated by the numerical routine and
the analytical solution are typically <0.5 s for calculations of
104 s duration. Numerical calculations with equation (16)
have errors in failure time of this order. The random
component in simulated populations was generated by
uniformly distributing the population starting stresses over
one period; this yields a uniform distribution of failure
phase when U = 0 (a uniform background seismicity rate).
The starting sliding velocity is determined from the starting
stress, assuming dt = 0 = 0. Because strength loss is not
abrupt, we have arbitrarily defined failure as occurring
when the sliding velocity reaches a threshold level Vfail =
0.03 mm s�1 or Vfail = 0.1 mm s�1. Since slip is accelerating
rapidly by this time, either choice or a still higher slip rate
threshold yields approximately the same failure time, and
the results are not affected [e.g., Dieterich, 1992].
[24] PDFs of simulated failure events are similar to the

laboratory data. At high frequency, there is essentially no
phase shift between the peak seismicity rate and the peak
stress amplitude (Figure 11a), as observed experimentally
(Figure 6a). In a lower frequency example (Figure 11b) the
duration of nucleation (150–200 s) is shorter than the
period of stress oscillation (500 s), causing the peak in
seismicity rate to shift toward the peak in stressing rate. For
this choice of parameters the stressing rate peak and
seismicity rate almost coincide. At longer periods the

stressing rate and seismicity rate peak coincide as in the
data (Figure 6b) and the Coulomb model (equation (12)).
The amplitude and frequency combinations defining the
(Pp/P0)max = 1.0 boundary in the simulations are similar to
the data at low frequency where the frequency dependence
is negative (Figure 12), but this boundary is frequency-
independent at high frequency. Thus the model reproduces a
two-mode response.
[25] Although equation (16) depends on velocity and

displacement, populations respond in a Coulomb-like fash-
ion when the period of the stress perturbation tw is longer

Figure 10. Accelerating failure with the simple strength
equation (16). Time to failure as a function of sliding
velocity was calculated using equation (A3), where the
loading velocity VL = 0.1 mm s�1, the velocity at failure
Vfail = 30 mm s�1, the ratio asn= _t = 71.4/s, g= _t =
132.9 s mm�1, and g = (�tsn/d* � k). In this example, 99%
of the displacement prior to failure occurs in the 181 s prior
to failure (see equations (A3)–(A5)). A line with slope �1
is shown for reference and for comparison with the
acceleration to failure seen in the experiments (Figure 1b).

Figure 11. Simulated probability density functions for the
simple rate and displacement-dependent strength equation
(16) using NT = 50, Vfail = 30 mm s�1, a = 0.005, �t/d*sn =
0.01 mm�1, k/sn = 0.00071 mm�1. The PDF (solid line) was
calculated using a centered finite difference implementation
of equation (6b). The histogram is a 6 bin representation of
the distribution in phase at failure of the 50 simulated
failure times. The periodic component of the driving stress
(dotted) is shown for comparison. (a) The results at high
frequency, U = 5 mm and tw = 10 s, are analogous to the
data in Figure 6a. (b) Same as Figure 11a except for low
frequency, U = 10 mm and tw = 500 s; results are analogous
to the data in Figure 6b.
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than the duration of nucleation tn. For simulations, the
duration of nucleation in the absence of the periodic stress
can be estimated directly (Appendix D) and we find tn
coincides with the transition between the two response
modes (Figure 12). Thus tw 	 tn defines the transition from
a Coulomb-like response to a mode where the fault response
is damped to high-frequency stress changes.
[26] A notable difference between predictions of equa-

tion (16) and the real populations (compare Figure 8 with
Figure 12) is the lack of a frequency dependence in the
boundary between correlated and uncorrelated populations
of equation (16) at high frequency. The lack of frequency
dependence apparently results from the logarithmic depen-
dence of fault strength on sliding velocity in equation (16).
We have conducted preliminary simulations where the
slip rate dependence of the fault deviates from the
logarithmic form, and the predicted boundary between
correlated and uncorrelated populations is frequency-de-
pendent. However, the quality of the experiments does
not allow detailed analysis of this frequency-dependent
response, so we use the simple failure law (16) to
constrain the rate dependence and to extrapolate the
experimental observations to natural conditions. Limita-
tions of our analysis, arising from our use of equation
(16), are discussed in section 7.
[27] Because P(q) for equation (16) is not analytic, we

obtain the probability that event populations are correlated
with a periodic stress by evaluating equation (10) with
equation (16) numerically. Fortunately, in the nucleation-
dominated mode there are simple scaling relationships

between amplitude and walkout rate. Simulated popula-
tions with N = 100 (Table 2) show that the stress amplitude
of the periodic component, �tu, is related to the amplitude
of the probability density function as �tu/asn = 2p(Pp)max

(Figure 13a), equivalent to observations in rate and state
simulations made by Dieterich [1987]. Furthermore, the
relationship between v and (Pp)max (Figure 13b) is well
approximated by v 	 p(Pp)max, the expected relationship if

Figure 12. Model predictions. Simulated frequency dependence of triggered seismicity with a threshold
failure model (dotted) and with equation (16) (symbols). Calculations with equation (16) use a = 0.005,
�t/d*sn = 0.01 mm�1, NT = 20, k/sn = 0.00071 mm�1 and VL = 0.1 mm s�1. Solid symbols are for
simulated populations with (Pm/P0)max > 1.0, open symbols for (Pm/P0)max < 1. Vertical dotted lines are
estimates of the duration of nucleation in the absence of the periodic stress from equations (A3)–(A5)
(see Appendix D). Dotted contours of (1 � Prw) for 0.90, 0.75, and 0.50 are predictions from the
Coulomb failure model (equation (12)) Dashed contours of (1 � Prw) are predictions of the nucleation-
dominated behavior from equation (17).

Table 2. Summary of Simulated Event Catalogs Used in Figure

13a

a U, mm tw, s Prw (Pp)max (Pp/P0)max v

0.005 0.1 10 0.0166 0.00226 0.0142 0.0122
0.005 1 10 0.431 0.0233 0.146 0.071
0.005 10 10 1 0.265 1.665 0.576
0.005 0.1 100 0.0134 0.00221 0.014 0.011
0.005 1 100 0.38 0.0227 0.143 0.0675
0.005 10 100 1 0.253 1.593 0.57
0.01 0.1 100 0.0097 0.00112 0.0071 0.01038
0.01 1 100 0.1156 0.0114 0.072 0.035
0.01 10 100 0.99999 0.126 0.79 0.331
0.01 0.1 10 0.0172 0.00113 0.0071 0.0105
0.01 1 10 0.172 0.0115 0.072 0.0367
0.01 10 10 0.99999 0.13 0.817 0.334
0.015 0.1 10 0.00638 0.00075 0.0047 0.01
0.015 1 10 0.0227 0.0076 0.048 0.025
0.015 10 10 0.9927 0.0826 0.519 0.23
0.015 0.1 100 0.01313 0.00075 0.00473 0.0102
0.015 1 100 0.0879 0.0076 0.048 0.0247
0.015 10 100 0.995 0.0823 0.517 0.229

aN = 100, VL = 0.1 mm s�1, �t/snd* = 0.01 mm�1, a = 0.005, k/sn =
0.0007 mm�1.
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P(q) were a perfect sine function (compare equation (2)).
Thus the walkout velocity is v 	 �tu/2asn, and from
equation (10),

Prw 	 exp �N
�tu
2asn

� �2
" #

: ð17Þ

Data from Lockner and Beeler [1999] (Table 1) can be used
with equation (17) to directly estimate a, yielding an
average value a = 0.0045 ± 0.0020.

6. Discussion: Implications for Seismicity

[28] Equation (17], which expresses the probability that a
population of earthquakes is not correlated with a periodic
stress change, may be used to analyze observed seismicity
for evidence of earthquake triggering by stress change. For
example, the relation between static stress change and
earthquake occurrence can be addressed with equation (17),
so long as the duration of nucleation is long with respect to
the period of observation but shorter than the duration of
nucleation. That is, we can consider a static stress change as

a long-period stress oscillation. The particular period being
unknown is not a problem, at least for faults obeying
equation (16), as in the nucleation-dominated regime the
degree of correlation is independent of period. We estimate
the number of events necessary to detect the correlation by
rearranging equation (17) to find

N 	 � ln Prwð Þ
�tu=2asnð Þ2

: ð18Þ

For illustration, Hardebeck et al. [1998] report that after-
shocks of the Landers earthquake do not correlate with static
stress changes of less 0.01 MPa [also see Reasenberg and
Simpson, 1992; Simpson and Reasenberg, 1994] so we
presume the period of observation (1 month) is sufficiently
short for faults to be in the nucleation dominated regime and
use equation (18) to estimate the number of events necessary
to detect correlation. At a confidence level of 60%, using
a = 0.0045, at depth of 5–15 km with sn = 18 MPa km�1, a
0.01 MPa stress change of would require N = 6.2 � 103 to
5.5 � 104 events to detect. Thus, given the small number of
available aftershocks in studies of static stress change, an
apparent stress change threshold for triggering [Hardebeck
et al., 1998; Reasenberg and Simpson, 1992; Simpson and
Reasenberg, 1994] should arise. Another significant predic-
tion of equation (18) is a very strong dependence of N on the
stress amplitude; for example if �tu is an order of
magnitude higher, �tu = 0.1 MPa, the number of events
necessary to detect correlation at the same confidence level,
N = 60 to 541, is 100 times smaller.
[29] While many studies find correlation between earth-

quakes and changes in the static Coulomb stress (see
summaries by Harris [1998] and Stein [1999]), these studies
also illuminate inadequacies of a Coulomb failure model.
For example, Coulomb failure requires that all earthquakes
occur in regions where the Coulomb stress has increased,
whereas in studies of static stress change often only 60 to
70% of aftershocks meet this requirement. This may be
another indication that earthquake failure is delayed as in
our experiments. As evident from equation (18) and our
example calculation, accounting for the amplitude of the
stress change strongly influences the model-predicted de-
gree of correlation between stress change and earthquake
occurrence.
[30] Equation (18) is most appropriately used in cases of

true periodic stressing. The absence of obvious triggering
by the solid Earth tides, which have f�tu/ _t � 1, suggests
that natural faults are in the nucleation-dominated regime
for the dominant tidal frequencies. In this case, the tidal
period can be used as a lower bound on the duration of
nucleation; i.e., typical earthquake nucleation times must
exceed the daily tidal period of �12.5 hours, otherwise a
strong correlation would be evident. This principal conclu-
sion of our study was inferred previously by Knopoff
[1964], on the basis of consideration of seismological data
and laboratory-observed static fatigue in rock as summa-
rized by Bridgeman [1952], and by Rydelek et al. [1992]
solely on the basis of seismological observations. We can
further constrain the duration of earthquake nucleation
using the results of simulations with equation (16) by noting
the duration of nucleation is close to, but somewhat higher
than, the frequency at the intersection of the two response

Figure 13. Scaling relationships for the simple slip and
slip rate-dependent failure equation (16). (a) (Pp)max versus
�tu/(dt/dlnV ) for simulated populations with N = 100.
Reference line is (Pp)max = (1/2p)(�tu/(dt/dlnV)). (b) v
versus (Pp)max. Reference line is v = p(Pp)max, the
relationship expected if P(q) is a sine function. At low
(Pp)max, v is independent of (Pp)max; this is an artifact of the
numerical calculation; it is the limit of resolution of the
calculation, corresponding to 1/N = 1/100.
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modes (Figure 12). Equating equations (12) and (17) to find
the intersection is

tn 	
2pasn

_t
: ð19aÞ

To evaluate equation (19a) for the San Andreas fault system,
we determine the stressing rate by assuming a stress 10 MPa
stress drop and 30 to 150 year recurrence, _t = 0.33 to
0.0667 MPa yr�1, a depth range of 5–15 km with se =
18 MPa km�1 (appropriate for hydrostatic fluid pressure),
and our experimentally derived value of a = 0.0045 (asn =
0.4–1.2 MPa). We estimate the typical duration of earth-
quake nucleation is 7.63–114.5 years. A less conservative
estimate of the duration of nucleation is [Dieterich, 1994]

tn 	
asn
_t

: ð19bÞ

Noting that equation (19a) somewhat overestimates the
point of inflexion in Figure 12 we repeat the estimate for
tn using equation (19b) and conclude the typical duration of
earthquake nucleation is 1.2 to 18.2 years.
[31] Presuming that seismic faults are in the nucleation-

dominated regime with respect to the daily tidal period we
can use equation (18) to estimate the number of events
necessary to detect the correlation. To detect correlation at
the 95% confidence level with �tu = 0.001 to 0.004 MPa,
again using a = 0.0045, at depth of 5–15 km with sn =
18 MPa km�1, would require N = 1.23 � 105 to 1.97 � 106

events. If a = 0.01 to 0.003, a range expected based on other
studies of rock friction, due to the strong dependence of N
on a and the wide range of expected values of a, the number
of events is N = 1.36 � 104 to 8.6 � 107. On the basis of
these assumptions, confident correlation between earth-
quakes and the daily tides should be extremely difficult to
detect, as is generally found [Vidale et al., 1998].

7. Some Limitations

[32] Our laboratory-inferred value of asn (section 6) may
be somewhat overestimated. By adopting equation (16) as a
description of failure, we have ignored the frequency
dependence of the boundary between correlated and uncor-
related populations at the highest frequencies (Figures 5
and 7). If, during the nucleation-dominated response mode,
failure time is sensitive to the frequency content of the
driving stress, then extrapolations of laboratory results to
the Earth must consider an extrapolation in frequency which
is not necessary with equation (16). On the basis of the
observed frequency dependence, tidal frequencies and
stressing rates would require a smaller value of asn than
predicted by equation (16). We recommend additional and
better constrained experiments with N � 20 to further
establish and characterize this frequency dependence.
[33] Consistent with our suspected overestimate of ase,

previous attempts to estimate asn from observational data
find much lower values than used in our extrapolations
(0.4 –1.2 MPa, section 6), for example, 0.035 MPa
(0.35 bars) [Toda et al., 1998], 0.08 to 0.09 MPa (0.8–
0.9 bars) [Belardinelli et al., 1999]. The Toda et al. [1998]
and Belardinelli et al. [1999] data require either that the
effective stress is very low (assuming a = 0.005–0.02 leads

to sn = 1.8–18 MPa), or that a is much smaller than
measured in lab experiments (assuming sn = 18 MPa
km�1 at 5–15 km yields a = 0.00013 � 0.001). Taking a
similar approach as these previous studies we use equation
(18) solved for asn = �tu=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�NT=lnPrw

p
with the earth-

quake catalog of Vidale et al. [1998] (N = 13,042) that
showed no strong correlation with Earth tides and assume
Prw = 0.49 and �t = 0.003 MPa to find asn = 0.20 MPa,
which is in better agreement, but still somewhat lower than
used in our extrapolation.
[34] The actual relationship between stress change and

earthquake failure time is unknown. Failure time in fric-
tional criteria, such as equation (16), is sensitive to stress
changes �m = �(t/sn), in contrast to the often used
Coulomb criterion where the relevant stress change is
�sc = �t � mf�sn, and mf is a constant coefficient of
friction. As our extrapolations consider only changes in
shear stress, and the shear and normal stress changes in our
experiments are coupled, we can not speculate on the most
appropriate stress change to use in studies of earthquakes
triggered by periodic stress.

8. Summary and Conclusions

[35] Laboratory faults whose failure times correlate with
an imposed periodic stress show two modes of response.
Which mode is observed depends on whether the period of
stress oscillation is longer or shorter than the duration of
nucleation tn. If natural faults respond in the same way as
laboratory-scale faults, the absence of earthquakes triggered
by the daily Earth tides requires that typical earthquake
nucleation times exceed the daily tidal period. We also
expect the following:
[36] 1. Seismicity should correlate strongly with the

amplitude and frequency of small periodic stress of tidal
magnitude if the period exceeds the duration of earthquake
nucleation. This response of fault populations to stress can
be represented by a strength model such as Coulomb failure
where strength drop occurs when the driving stress reaches
a threshold.
[37] 2. Correlation of seismicity with periodic stress

should be much weaker than predicted by threshold models
when the period of the driving stress is less than the
duration of nucleation, in agreement with arguments made
by Knopoff [1964] and Rydelek et al. [1992]. The weaker
correlation reflects a damped response of faults to stress
change. For laboratory faults the weak correlation results
from a positive dependence of fault strength on deformation
rate, the fault constitutive property that allows gradual
failure nucleation.
[38] Our interpretation of seismic failure in laboratory

rock friction experiments suggests that the duration of
nucleation and the insensitivity of the onset of seismic fault
slip to short-period stress changes are determined by the
small dependence of subcritical crack growth rate on stress
within the fault zone. If natural fault populations have the
same properties as experiments, we expect a very weak
correlation of earthquake occurrence with the daily tides and
a minimum duration of earthquake nucleation in the shallow
crust for the San Andreas system of �1 year. Since our
results indicate strong correlation between earthquake oc-
currence and periodic stresses with periods greater than the
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duration of nucleation, we suggest that seasonal stress
variations, for example those due to hydraulic loading from
reservoirs or aquifers, or longer term climate anomalies may
provide better evidence of stress triggering than the daily
tides. Such long-period stress changes may also provide
interpretable constraints on the duration of earthquake
nucleation.

Appendix A: Friction Equations and Which
Failure Law?

[39] On the basis of the observations from studies of rock
friction [e.g, Dieterich, 1981; Tullis and Weeks, 1986;
Blanpied et al., 1998] and failure of intact rock [Lockner,
1998], over a wide range of deformation rates, rock shear
resistance at low temperature depends weakly on the rate of
inelastic deformation. This rate dependence of strength is
well represented by a logarithmic dependence as in rock
failure and rock friction constitutive relations [e.g., Ruina,
1983; Lockner, 1998]. A number of empirical frictional
constitutive equations have been proposed, primarily to
describe laboratory observations of stable sliding [e.g.,
Ruina, 1983; Linker and Dieterich, 1992; Perrin et al.,
1995]. These equations also produce stick-slip cycles, but
are complicated by the inclusion of a state variable of
uncertain physical origin. Here we demonstrate that none
of these relationships results in a superior failure criterion
for our experiments than the simple failure equation (16)
used in the primary analysis in this paper. Trial calculations
were performed using the rate and state friction equation

t
se

¼ m* þ aln
V

V*
þ bln

yV*
dc

; ðA1Þ

and three different forms of state variable y: Ruina’s
[1983]equation (14), where state depends on slip only,
Ruina’s [1983]equation (16), where state is slip- and time-
dependent, and a quadratic relation of Perrin et al. [1995,
p. 1489]. We used the procedure described in section 5.2 to
generate synthetic populations of failure time, and have
analyzed those populations to determine the degree of
correlation with the periodic component of the loading
using equations (1) and (2). With the exception of the
quadratic relation of Perrin et al. [1995], the stress
amplitude and frequency where seismicity is correlated
with the driving stress of these rate and state formulations
are identical, and they are identical to the results with
equation (16) (Table A1). The results of the quadratic
relation are offset to slightly lower amplitude, but are
otherwise identical. Thus for rate and state descriptions,
stress triggering by periodic loading is effectively indepen-
dent of the state variable, whatever state might represent,
and we can confidently use the simplified failure law
equation (16). This is a result, in hindsight, that might be
inferred from tidal simulations conducted by Dieterich
[1987].

Appendix B: Sensitivity of Results to Constitutive
Parameters

[40] The simple failure law (16) contains 2 free param-
eter combinations which affect the characteristics of

Table A1. Summary of Simulated Event Catalogs for Different

Friction Constitutive Equationsa

U, mm tw, s Prw 1 � Prw (Pp)max (Pp/P0)max v State

0.1 100 0.95 0.05 0.0022 0.0136 0.052 s
1 100 0.87 0.13 0.0224 0.1407 0.0789 s
10 100 0.003 0.997 0.251 1.58 0.558 s
5 100 0.14 0.86 0.122 0.77 0.3213 s
0.1 500 0.95 0.05 0.0015 0.0092 0.048 s
1 500 0.86 0.14 0.0149 0.097 0.0285 s
5 500 0.25 0.75 0.079 0.498 0.193 s
10 500 0.016 0.984 0.165 1.035 0.398 s
15 750 0.005 0.995 0.186 1.17 0.452 s
10 750 0.06 0.94 0.122 0.765 0.302 s
1 750 0.88 0.12 0.0115 0.0724 0.023 s
0.1 750 0.95 0.05 0.0011 0.0072 0.0486 s
10 10 0.001 0.999 0.259 1.627 0.596 s
5 10 0.14 0.86 0.126 0.792 0.333 s
1 10 0.81 0.19 0.0229 0.144 0.082 s
0.1 10 0.95 0.05 0.0022 0.0139 0.053 s
10 50 0.001 0.999 0.256 1.61 0.569 s
5 50 0.24 0.76 0.125 0.78 0.326 s
1 50 0.92 0.08 0.0226 0.142 0.085 s
0.1 50 0.96 0.04 0.0022 0.138 0.053 s
10 10 0.0002 0.9998 0.306 1.92 0.66 slip
5 10 0.05 0.95 0.152 0.96 0.4 slip
1 10 0.83 0.17 0.027 0.17 0.1 slip
0.1 10 0.95 0.05 0.003 0.018 0.052 slip
10 50 0.0003 0.9997 0.313 1.97 0.63 slip
5 50 0.025 0.975 0.156 0.98 0.41 slip
1 50 0.75 0.25 0.028 0.18 0.103 slip
0.1 50 0.94 0.06 0.003 0.017 0.051 slip
10 100 0.0003 0.9997 0.31 1.95 0.63 slip
5 100 0.028 0.972 0.15 0.97 0.39 slip
1 100 0.71 0.29 0.028 0.18 0.093 slip
0.1 100 0.93 0.07 0.0027 0.017 0.049 slip
15 750 0.015 0.985 0.199 1.25 0.48 slip
10 750 0.13 0.87 0.131 0.082 0.33 slip
5 750 0.66 0.34 0.064 0.4 0.15 slip
1 750 0.99 0.01 0.012 0.078 0.029 slip
0.1 750 0.96 0.04 0.0012 0.0078 0.048 slip
10 10 0.007 0.993 0.259 1.6 0.58 slow
5 10 0.075 0.925 0.126 0.79 0.34 slow
1 10 0.92 0.08 0.023 0.14 0.084 slow
0.1 10 0.95 0.05 0.0021 0.013 0.051 slow
10 50 0.006 0.994 0.257 1.6 0.57 slow
5 50 0.068 0.932 0.126 0.79 0.34 slow
1 50 0.79 0.21 0.023 0.14 0.08 slow
0.1 50 0.94 0.06 0.0022 0.014 0.05 slow
10 100 0.001 0.999 0.25 1.58 0.56 slow
5 100 0.17 0.83 0.12 0.77 0.32 slow
1 100 0.993 0.007 0.023 0.14 0.076 slow
0.1 100 0.963 0.037 0.0021 0.013 0.05 slow
15 750 0.006 0.994 0.19 1.17 0.45 slow
10 750 0.077 0.923 0.12 0.77 0.31 slow
5 750 0.484 0.516 0.06 0.37 0.14 slow
1 750 0.928 0.072 0.012 0.07 0.024 slow
0.1 750 0.951 0.049 0.0011 0.0072 0.049 slow
5 10 0.002 0.998 0.28 1.75 0.58 quad
1 10 0.542 0.458 0.05 0.32 0.16 quad
0.1 10 0.94 0.06 0.004 0.028 0.0053 quad
5 50 0.003 0.997 0.25 1.63 0.56 quad
1 50 0.552 0.448 0.045 0.29 0.14 quad
0.1 50 0.93 0.07 0.0044 0.027 0.05 quad
5 100 0.002 0.998 0.24 1.5 0.52 quad
1 100 0.587 0.413 0.043 0.27 0.12 quad
0.1 100 0.933 0.067 0.0042 0.027 0.046 quad
15 750 0.007 0.993 0.2 1.25 0.51 quad
10 750 0.097 0.903 0.13 0.83 0.35 quad
5 750 0.634 0.366 0.065 0.41 0.15 quad
1 750 0.991 0.009 0.013 0.081 0.017 quad
0.1 750 0.958 0.042 0.0013 0.0085 0.048 quad
aN = 20, VL = 0.1 mm s�1, a = 0.005, b/dc = 0.01, k/se = 0.00071 mm�1; s,

equation (16); slip, Ruina [1983, equation (14)]; slow, Ruina [1983,
equation (16)]; quad, Perrin et al. [1995, p. 1489].
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failure: a and �t/snd*. We have conducted simulations at
different values of these parameters at two different
loading rates (Table A2). The correlated response of
populations obeying (16) does not depend on �t/snd*.
This result confirms that of Dieterich [1987], who used
Ruina’s [1983]equation (16) with equation (A1), for
which our equation (16) is a simplification. Thus, as
suggested by the tidal simulations of Dieterich [1987] and
the seismicity rate formulation of Dieterich [1994], the
parameter a alone in equation (16) controls the population
response to periodic stress.

Appendix C: Normal Stress Dependence

[41] Experiments by Linker and Dieterich [1992] show
small slip-dependent changes in friction, m = t/sn, in
response to changes in normal stress. Our experiments are
conducted in a triaxial geometry (Figure 2) where the least
and intermediate principal stresses are constant, and the
fault is at a fixed angle f to the greatest principal stress. In
this configuration, fault normal stress is coupled to the shear
stress and confining pressure as sn = s3 + t tan f. To
determine whether variations in normal stress need to be
taken into account in modeling our experimental observa-
tions, we conducted calculations including the normal
stress-dependent effect using constitutive equation (A1)
with the state variable y given by

dy
dt

¼ 1� Vy
dc

� ay
bsn

dsn
dt

; ðC1aÞ

Table A2. Summary of Simulated Event Catalogs With Variable

Constitutive Parametersa

VL,
mm s�1 a

�t/snd*,
mm�1

U,
mm

tw,
s Prw 1 � Prw (Pp)max (Pp/P0)max v

0.1 0.005 0.01 10 100 0.002 0.998 0.251 1.58 0.558
0.1 0.005 0.01 5 100 0.135 0.865 0.122 0.767 0.321
0.1 0.005 0.01 10 10 0.0008 0.9992 0.259 1.63 0.596
0.1 0.005 0.01 5 10 0.136 0.864 0.126 0.792 0.33
0.1 0.01 0.01 10 100 0.072 0.928 0.125 0.79 0.33
0.1 0.01 0.01 5 100 0.486 0.514 0.059 0.37 0.184
0.1 0.01 0.01 10 10 0.077 0.923 0.125 0.79 0.34
0.1 0.01 0.01 5 10 0.248 0.752 0.06 0.37 0.18
0.1 0.005 0.015 10 100 0.001 0.999 0.251 1.58 0.552
0.1 0.005 0.015 5 100 0.134 0.866 0.122 0.77 0.32
0.1 0.005 0.015 10 10 0.001 0.999 0.258 1.62 0.58
0.1 0.005 0.015 5 10 0.118 0.882 0.126 0.79 0.35
0.1 0.01 0.015 10 100 0.243 0.757 0.125 0.79 0.34
0.1 0.01 0.015 5 100 0.633 0.367 0.06 0.37 0.18
0.1 0.01 0.015 10 10 0.071 0.929 0.126 0.8 0.33
0.1 0.01 0.015 5 10 0.678 0.322 0.06 0.37 0.18
0.01 0.005 0.01 10 100 0.001 0.999 0.258 1.62 0.57
0.01 0.005 0.01 5 100 0.074 0.926 0.126 0.79 0.33
0.01 0.005 0.01 10 10 0.002 0.998 0.31 1.97 0.57
0.01 0.005 0.01 5 10 0.105 0.895 0.126 0.79 0.33
0.01 0.01 0.01 10 100 0.087 0.913 0.126 0.79 0.35
0.01 0.01 0.01 5 100 0.395 0.605 0.06 0.38 0.18
0.01 0.01 0.01 10 10 0.132 0.868 0.16 1 0.34
0.01 0.01 0.01 5 10 0.728 0.272 0.06 0.38 0.18
0.01 0.005 0.015 10 100 0.001 0.999 0.258 1.62 0.58
0.01 0.005 0.015 5 100 0.071 0.929 0.126 0.79 0.35
0.01 0.005 0.015 10 10 0.002 0.998 0.251 1.58 0.57
0.01 0.005 0.015 5 10 0.138 0.862 0.128 0.8 0.33
0.01 0.01 0.015 10 100 0.106 0.894 0.126 0.79 0.33
0.01 0.01 0.015 5 100 0.394 0.606 0.06 0.37 0.187
0.01 0.01 0.015 10 10 0.062 0.938 0.156 0.98 0.34
0.01 0.01 0.015 5 10 0.404 0.596 0.06 0.38 0.19
aN = 20.

Figure A1. Variable normal stress. Model predictions for a fault at a fixed angle to the greatest principal
stress at constant confining pressure (Figure 2). Simulated frequency dependence of triggered seismicity
with equations (A1) and (C1). Calculations use a = 0.005, b = 0.01, dc = 1mm, f = 30�, NT = 20, a = 0.23,
s3 = 50 MPa, k = 0.06 MPa mm�1, and VL = 0.1 mm s�1. The starting value of the state variable is y0 =
10,000 s. Solid symbols are for calculations with (Pp/P0)max > 1.0; open symbols are for (Pp/P0)max < 1.
The probability contours shown are those corresponding to the calculation shown in Figure 12. Also
shown are estimates of the duration of nucleation for the calculation shown in Figure 12.
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Linker and Dieterich [1992]. Noting that in our experi-
mental geometry dsn = dttanf, we find

dy
dt

¼ 1� Vy
dc

� ay
bsn

tanf
dt
dt

: ðC1bÞ

Failure times of fault populations were calculated numeri-
cally using oscillatory loading of the form dL = dL0 + VLt + U
sin wt coupled through an elastic element with stiffness k,
representing the stiffness of the sample and loading frame,
using the procedure described in section 5.2. The results
show the same response (Figure A1) as constant normal
stress simulations (Figure 12). For simplicity in simulating
the experiments of Lockner and Beeler [1999], elsewhere in
this paper, we assume constant normal stress.

Appendix D: Characteristics of the Simple
Failure Law

[42] The simple failure law equation (16) reproduces the
principal aspects of failure observed in our experiments,
notably, accelerating premonitory creep and delayed failure
in the absence of oscillating stress (Figure 10) (see
equation (D2) below), which distinguish nucleating slip
from slip resulting from a threshold failure model. Equa-
tion (16) has analytical solutions for a number of simple
stressing histories [Dieterich, 1994; Gomberg et al., 1998],
in particular for the duration of nucleation tn. At constant
stressing rate time to failure is [Dieterich, 1992]

ttf ¼ � asn
_t

ln

1

Vfail

þ g

_t
1

V
þ g

_t

2
664

3
775; ðD1Þ

where g = (�t/d* � k). Time of failure can be found by
substituting Vstart = V into (D1); Vstart, the sliding velocity at
the start of the calculation, is required to be much smaller
than the loading velocity. The total accrued displacement
prior to failure is

df ¼ � asn
_t

ln 1� gVstart

_t
exp

_t
ttf

� �
� 1

� �� �
: ðD2Þ

Noting that the duration of nucleation is the time in which
the majority of the precursory slip occurs, say 99% of that
slip, we then solve

0:99df ¼ � asn
_t

ln 1� gVn

_t

1

Vn

þ g

_t
1

Vfail

þ g

_t

� 1

8>><
>>:

9>>=
>>;

2
664

3
775 ðD3Þ

for the velocity at the onset of nucleation Vn. Vn = V can
then be substituted back into equation (D1) yielding tn.
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