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Abstract We describe a technique to estimate the seismic moment of acoustic
emissions and other extremely small seismic events. Unlike previous calibration tech-
niques, it does not require modeling of the wave propagation, sensor response, or
signal conditioning. Rather, this technique calibrates the recording system as a whole
and uses a ball impact as a reference source or empirical Green’s function. To correctly
apply this technique, we develop mathematical expressions that link the seismic mo-
ment M0 of internal seismic sources (i.e., earthquakes and acoustic emissions) to the
impulse, or change in momentum Δp, of externally applied seismic sources (i.e., me-
teor impacts or, in this case, ball impact). We find that, at low frequencies, moment and
impulse are linked by a constant, which we call the force-moment-rate scale factor
CF _M � M0=Δp. This constant is equal to twice the speed of sound in the material
from which the seismic sources were generated. Next, we demonstrate the calibration
technique on two different experimental rock mechanics facilities. The first example is
a saw-cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa
confining pressure. The second example is a 2 m long fault cut in a granite sample and
deformed in a large biaxial apparatus at lower stress levels. Using the empirical cali-
bration technique, we are able to determine absolute source parameters including the
seismic moment, corner frequency, stress drop, and radiated energy of these magnitude
−2:5 to −7 seismic events.

Introduction

Extremely small seismic events, often called acoustic
emissions (AEs), are associated with fracture, slip on frictional
interfaces, and other processes occurring inside a material or
structure. AEs produce mechanical vibrations that can be
detected by sensors on the surface of the structure. This infor-
mation is used to noninvasively monitor damage in engineer-
ing applications (e.g., Grosse and Ohtsu, 2008), in mining
environments (e.g., Kwiatek et al., 2011), and for the labora-
tory study of rock fracture and faulting (e.g., Lockner, 1993)
and semibrittle deformation (e.g., Brantut et al., 2011). For
most AE monitoring applications, piezoelectric sensors with
high sensitivity and recording systems with high gain are
needed to ensure that large numbers of AEs are detected. How-
ever, the sensors and recording equipment are typically not
calibrated, and it is not typically known whether a particular
piezoelectric sensor measures acceleration, velocity, or dis-
placement. This limits the usefulness and reliability of the
method. AE systems that are not calibrated can be used to cata-
log the occurrence, locations, relative amplitudes, and, in
some cases, the focal mechanisms of AEs, but physical inter-

pretations of the observations can be difficult. In contrast, sys-
tems that are calibrated allow users to determine the absolute
amplitudes or size of the AEs, and this can help constrain their
mechanics (McLaskey and Lockner, 2014). The assumed sim-
ilarity between AEs and natural earthquakes provides one of
the principal motivations for studying AE in the earth sciences
(Mogi, 1962; Scholz, 1968; Lei et al., 1993; Goebel et al.,
2012), but calibration is required to directly compare the size
of AEs to their natural counterparts (Goodfellow and Young,
2014; McLaskey et al., 2014). Importantly, results from abso-
lutely calibrated AE systems can be quantitatively compared
to other AE results that employ different sensors and different
recording equipment, and this will contribute to reliability and
accountability of the method as a whole.

A fully calibrated AE system requires proper consider-
ation of sensor response, the effects of filters and amplifiers,
and elastodynamic wave propagation in the sample. A few
researchers have calibrated AE systems either against theory
(Eitzen and Brekenridge, 1987; McLaskey and Glaser, 2012)
or using the principle of reciprocity (e.g., Hatano and Wata-
nabe, 1997; Goujon and Baboux, 2003). Calibration experi-
ments are typically performed on large, homogenous test
blocks with simple geometry and polished surfaces. Because
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piezoelectric sensor response can change in different envi-
ronments and when coupled to different materials or with
different coupling methods, practitioners would prefer a rel-
atively simple method to calibrate an AE system under con-
ditions similar to those observed during an experiment or
particular monitoring application (i.e., an in situ calibration).

In this article, we describe an in situ calibration method
that allows us to make absolute measurements of AEs and
other laboratory-generated seismic sources such as stick-slip
events. Instead of calibrating the sensor, we calibrate the re-
cording system as a whole, including the effects of wave pro-
pagation and sensor coupling. The method uses a tiny ball
dropped onto the surface of the sample as a reference source,
or empirical Green’s function (EGF). The principle advantage
of the ball impact source over other potential EGF sources
such as small AEs, fracture of pencil lead or capillary tube,
or piezoelectric pulses, is that the absolute amplitude of the
seismic waves can be linked to the momentum of the ball,
which is directly measured or easily estimated from the ball
mass and drop height. The method relies on a number of sim-
plifications and approximations, but because it does not re-
quire the practitioner to model wave propagation or sensor
response, it is far simpler than alternative techniques. First,
we present a theoretical formulation of the method. Then we
demonstrate the technique on two different AE systems used
for rock mechanics testing. Using the empirical calibration
technique, we are able to determine absolute source param-
eters including the seismic moment, corner frequency, stress
drop, and radiated energy.

Theoretical Formulation

The equations outlined below describe a mathematical
framework for representing seismic signals based on the as-
sumptions of linear transfer functions or linear systems theory
(e.g., Hsu and Breckenridge, 1981; Oppenheim et al., 1983).
Throughout this article, we denote convolution in time by ⊗,
subscripts designate vector and tensor components, a comma
between subscripts designates a spatial derivative, and sum-
mation of repeated subscripts is implied. The superscripts int
and ext indicate quantities pertaining to internal sources (e.g.,
earthquakes, AEs) and external sources (e.g., meteor impact,
ball impact), respectively. We use a Green’s function gki�t� to
represent the effects of wave propagation including geometri-
cal spreading, scattering, and attenuation. Following previous
work (e.g., Stump and Johnson, 1977; Aki and Richards,
1980), the spatial extent of the seismic source is approximated
as a point, and the Green’s function is expanded as a Taylor
series about that point. Under this Taylor expansion, the real or
equivalent forces that constitute the seismic source are repre-
sented by a force vector fi and a series of moment tensors of
increasingly higher order (i.e., mij, mijl, etc.), and ground dis-
placement uk�t� is expressed as

uk�t� � gki�t�⊗fi�t� � gki;j�t�⊗mij�t�
� gki;jl�t�⊗mijl�t� �…: �1�

For the characterization of earthquakes, underground
explosions, mine collapse, acoustic emissions, and other
seismic sources that are indigenous to the earth or specimen
under test, conservation of linear momentum requires that
fi � 0, therefore only the second term of the Taylor series
is used:

uintk �t� � gintki;j�t�⊗mij�t� � sint�t�⊗iintk �t�−1: �2�

The seismic source is represented by the (second order) mo-
ment tensor mij�t�, s�t� refers to a recorded signal, and ik�t�
is the instrument response function. For meteor impact (or
ball impact) and other sources that act on the exterior of
the earth (or laboratory sample), the first term of the Taylor
series is used. Ground displacement is expressed as

uextk �t� � gextki �t�⊗fi�t� � sext�t�⊗iextk �t�−1; �3�

and the seismic source is represented as a force vector fi�t�.

Directionality of the Source

The directionality and spatial orientation of the source
(the focal mechanism) is assumed to be separable from its
amplitude and time history such that

_mij�t� � _m�t�Λij � M0 _̂m�t�Λij �4�
and

fi�t� � f�t�Ξi � Δpf̂�t�Ξi: �5�

Here, and throughout, variables with a hat refer to functions
that retain the shape of their parent function (which have no
hat) but have been normalized by their absolute amplitude
(e.g., _̂m�t� � _m�t�=M0 and f̂�t� � f�t�=Δp). Λij is a tensor
with the sum of the squares of the eigenvalues equal to 2
(e.g., Bowers and Hudson, 1999), Ξi is a vector of unit
length, and M0 and Δp are seismic moment and change
in momentum as defined below. The overdot indicates a time
derivative. Alternatively, directionality can be taken into ac-
count with radiation pattern terms (e.g., Λij � XSH�θ;ϕ� and
Ξi � XF�ϕ�), which adjust the amplitude of the source with
the azimuth θ and dip ϕ of ray paths departing from the
source. These radiation pattern effects are different for differ-
ent wave phases (P, SV, SH) and source types (i.e., double
couple versus point force).

In the current work, we average over multiple stations
that sample θ and ϕ. This averages out the modulating effects
of radiation pattern terms (i.e., Xj≡Ξi=Λij ≈ 1) and allows us
to restrict the characterization of internal and external seismic
sources to the estimation of _m�t� or f�t�, respectively.
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Empirical Green’s Function Procedure

The current calibration procedure is based on the prin-
ciple of an EGF (Mueller, 1985). In this approach, the source
properties of one seismic event are estimated using a differ-
ent, collocated event with a known or assumed source func-
tion as a reference. Instrument effects are never separated
from wave propagation effects or radiation pattern. Instead,
we define an instrument-apparatus response function

ψ int�t�≡sint�t�⊗ _m�t�−1 � Λij

Z
gintki;j�t�dt⊗iintk �t� �6�

for a chosen source-sensor geometry and source focal
mechanism. Similarly, for external sources,

ψext�t�≡sext�t�⊗f�t�−1 � Ξigextki �t�⊗iextk �t�: �7�

The time integral in equation (6) arises as a result of the time
derivative associated with _m�t�.

In an EGF procedure, two events are compared. One
acts as the EGF source (here denoted with the superscript
EGF), and the other acts as the test source (superscript test).
The relations below are outlined for internal sources only,
but similar relations can be described for external sources.
For brevity, we omit the superscripts int. The EGF and test
events are collocated, recorded by the same seismic sta-
tions, and the focal mechanisms are assumed to be identical.
Therefore,

ψEGF�t� � ψ test�t�: �8�

To solve for _mtest�t�, we first determine the instrument-
apparatus response function ψEGF�t� from recorded signals
sEGF�t� using equation (6). Here, properties of the EGF source
_mEGF�t�must be known or assumed. Then equation (8) is sub-
stituted into equation (6), and the source of the test event
_mtest�t� can be determined from recorded signals stest�t�. This
method has been used by numerous authors to study earth-
quakes (e.g., Frankel and Kanamori, 1983; Mueller, 1985;
Hutchings andWu, 1990; Hough and Dreger, 1995). A similar
methodology has been employed for AEs (e.g., Dahm, 1996;
Sellers et al., 2003; Kwiatek et al., 2011). For earthquakes, the
absolute moment of the test event is often determined from an
independently calibrated sensor network. For AEs, the magni-
tudes of both potential EGF and test events are unknown. In
this work, we adapt the EGF technique so that we can use ball
impact as an EGF source, because the absolute magnitude of
the ball impact can be independently measured and its source
spectrum is well known from theory. However, the impact
source fi�t� is external to the body (equation 3) whereas
the AE source _mij�t� acts internally (equation 2), so we must
derive an expression to relate internal and external sources, as
described below.

Similarities between Spectra of Impacts and
Earthquakes

An alternate and complementary way to describe a seis-
mic source is by the characteristics of its frequency spectrum,
which is determined from the Fourier transform of either f�t�
or _m�t�. In this approach, properties of the source are esti-
mated in an average sense over the entire time window used
to construct the Fourier transform. Phase information is gen-
erally ignored.

The basic features of the source spectra of impact sources,
earthquakes, and AEs are described in Figure 1. Spectra of all
of these types of sources are characterized by a corner fre-
quency f0 that is inversely proportional to Td, the time dura-
tion of the nonzero part of f�t� or _m�t�. For frequencies
f < f0, the spectra are flat and have long-period amplitude
Ω0. For f > f0, spectra fall below Ω0 with a high-frequency
spectral decay of the form �f=f0�−γ . γ � 2 for most earth-
quake source models (e.g., Aki, 1967; Brune, 1970), whereas
we find that γ � 2:5 for the ball impact (from the Fourier
transform of f�t� described by equation 17).

For the ball impact source, f�t� is the force that the ball
imposes on the surface of the specimen, andΩ0 is proportional
to the time integral of f�t�, which is the ball’s change in mo-
mentum (due to change in velocity upon impact), or impulse,
Δp. Similarly, _m�t� is the moment rate of the earthquake, and
Ω0 is proportional to the time integral of _m�t�, which is the
scalar seismic moment M0. These low-frequency characteris-
tics can be expressed in the frequency domain as

_M�f� � M0 f < f0 �9�
and

F�f� � Δp f < f0: �10�
Even if the source is not ultimately described in the
frequency domain, calculations are often performed in the fre-
quency domain because convolution is reduced to multiplica-
tion. By taking their Fourier transforms, and using the

Figure 1. General features of the frequency spectrum of seismic
sources include the low-frequency level Ω0, the corner frequency f0,
and the high-frequency fall-off γ. For earthquakes and acoustic emis-
sions (AEs),Ω0 is equal to the seismic moment of the source, whereas
for ball impact, it is equal to the ball’s change in momentum.
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derivative theorem of Fourier transforms (Bracewell, 2000),
equations (6) and (7) become

Ψint�f�≡ Sint�f�
_M�f� � ΛijGint

ki;j�f�Iintk �f�
i2πf

�11�

and

Ψext�f�≡ Sext�f�
F�f� � ΞiGext

ki �f�Iextk �f�; �12�

in which the instrument-apparatus response spectrum Ψ�f� is
the Fourier transform of the instrument-apparatus response
function ψ�t�.

Relating Moment and Impulse

Noting that the spectra of F�f� and _M�f� are both flat at
low frequencies, we propose that, under appropriate conditions,
they are related by a simple constant. In particular, we are in-
terested in determining the seismic moment of an internal source
that has exactly the same ground displacement uk�t� as an ex-
ternal source of known impulse Δp (at least at frequencies be-
low the corner frequency). This requirement, uextk �t� � uintk �t�,
defines the scale factor CF _M (for force-moment-rate):

CF _M≡ _M�f�=F�f� � _m�t�=f�t� � M0=Δp f < f0:

�13�
CF _M has units of velocity and is equal to twice thewave velocity
in the material from which the seismic sources originate. If S
waves (P waves) are used to estimate M0 and Δp, then
CF _M is twice the S-wave (P-wave) velocity. CF _M is derived
theoretically in the Appendix, and is verified experimentally
as described in the Empirical Estimation of CF _M section.

To relate ψ ext�t� and ψ int�t�, we substitute equation (13)
into equation (6) to obtain

sint�t� � CF _Mf�t�⊗ψ int�t� f < f0: �14�

For the special case when internal and external sources
have identical ground displacements, uextk �t� � uintk �t�, and
they are recorded on identical instruments, iextk �t� � iintk �t�,
then their recorded signals are also identical, sext�t� � sint�t�
(at frequencies below the corner frequency). In this case, we
equate equation (14) with equation (7) to find

ψ ext�t� � CF _Mψ
int�t� f < f0: �15�

In the frequency domain, this becomes

Ψext�f� � CF _MΨint�f� f < f0: �16�

Equations (13), (15), or (16) can be used to relate properties of
internal seismic sources (e.g., earthquakes, AEs) to properties of

external seismic sources (meteor impact, ball impact). For ex-
ample, the equations can be used to find the equivalent seismic
moment of a meteor impact (the seismic moment of a collo-
cated earthquake that would produce the same low-frequency
ground motions) or the equivalent change in momentum of an
earthquake or AE.

Determination of Force-Time Function f�t� Using
Hertz Theory

Following previous work, the force-time history, f�t�,
that a ball imposes upon a massive body can be calculated
from Hertzian theory. This theory relies on the mechanics
of elasticity to derive forces and deformation associated with
the collision of spheres. McLaskey and Glaser (2010) showed
that, despite its quasistatic and elastic form, Hertzian theory
adequately describes the force pulses and resulting stress
waves that arise from the collision of small balls on massive
samples composed of a variety of materials. In the following
equations, δI � �1 − μ2i �=�πEi�, and E and μ are the Young’s
modulus and Poisson’s ratio, respectively. R1 and v0 are the
radius and incoming velocity of the ball. Subscript 1 refers to
the material of the ball and subscript 2 is the material of the
more massive test specimen. The time the ball spends in con-
tact with the specimen is tc � 1=fc � 4:53�4ρ1π�δ1�
δ2�=3�2=5R1v

−1=5
0 , and the maximum force the ball exerts

during this time is Fmax � 1:917ρ3=51 �δ1 � δ2�−2=5R2
1v

6=5
0

(Goldsmith, 2001; McLaskey and Glaser, 2010, 2012). The full
force-time function is

f�t� � Fmax sin�πt=tc�3=2 0 ≤ jtj ≤ tc;
f�t� � 0 otherwise

: �17�

The change in momentumΔp that the ball imparts to the
test specimen is equal to the area under the force-time func-
tion Δp ≈ 0:5564tcfmax. Δp can be independently calcu-
lated based on the mass m of the ball and the incoming
(v0) and rebound (vf) velocities: Δp � m�v0 − vf� (v0
and vf have opposite signs). In this work, we refer to the
impact as ball impact rather than elastic impact because
we find that it need not be completely elastic. If the ball re-
bounds to greater than half of the original drop height then its
source characteristics can be adequately estimated from the
above equations as long as Fmax is scaled to account for the
diminished change in momentum Δp. For example, if the
ball bounces back to half its original drop height, then the
maximum force Fmax 1=2 ≈ 0:75Fmax.

Summary of the Method

To estimate the absolute source properties of an AE, we
must deconvolve the path and instrument effects (represented
by Ψint�f�) from recorded signals sint�t�. We cannot obtain
Ψint�f� directly from recorded AE signals because the abso-
lute amplitude of a suitable EGF event is typically not avail-
able. Instead, we employ the force-moment-rate scale factor

260 G. C. McLaskey, D. A. Lockner, B. D. Kilgore, and N. M. Beeler



CF _M (equation 16) to derive the desired instrument-apparatus
response (Ψint�f�) from that of a collocated ball drop
(Ψext�f�). We can obtain Ψext�f� directly from signals re-
corded from a ball impact sext�t� (equation 12) because the
absolute source spectrum of the ball drop (F�f�) can be ob-
tained from the Fourier transform of the ball’s force-time func-
tion, which can be calculated from Hertz theory (equation 17).

Example 1: Triaxial Apparatus

In this first example, we demonstrate the empirical cal-
ibration technique on a cylindrical sample of Westerly gran-
ite (76.2 mm diameter) in a triaxial loading apparatus at a
confining pressure of 40 MPa. During a typical experiment,
AEs are produced by deformation on a simulated fault that
is a saw cut inclined at 30° to the vertical axis, as shown in
Figure 2a,b. The saw-cut surfaces were surface ground and
then hand lapped with 600 grit abrasive (approximately
15 μm particle size) to produce a smooth, uniform fault sur-
face. The test sample is instrumented with 16 AE sensors
(PZ1–PZ16) described in detail in Figure 2. The granite sam-
ple is enclosed in a polyurethane jacket to isolate it from the
silicone oil used as the confining fluid. More experimental
details can be found in McLaskey and Lockner (2014).

To estimate the absolute amplitude of the AEs with the
empirical calibration method, we need to employ equa-
tion (16). For this equation to be valid, we must perform a
ball drop under conditions that are nearly identical to those of
the AEs. To accomplish this for AEs produced by a sample
inside a pressure vessel, we assembled a calibration sample,
shown schematically in Figure 2c. The calibration sample is
identical to the test sample (Fig. 2b), except that instead of a
simulated fault, it contains a cavity in which ball impact can
take place. To prepare the calibration sample, a 76.2 mm

diameter granite cylinder was cut perpendicular to its axis.
A 6.35 mm diameter hole (A) is drilled down the center axis
of one piece (B). The other piece (C) is kept intact, and they
are surface ground and epoxied back together. A 4.76 mm
diameter steel ball (D) is placed in the hole. A 3.2 mm diam-
eter magnet (E) is glued to the end of a 300 mm long section
of piano wire (F). A cylindrical steel end cap (G) 25 mm long
and 76 mm in diameter has a hole in its center, and a hollow
cylindrical aluminum insert is glued into this hole that is
large enough to allow the wire and magnet to pass through
but small enough to stop the ball. The piano wire extends out
of the hole and out of the pressure vessel through a section of
tubing. By manually pushing on the piano wire, the magnet
can be lowered to the bottom of the hole. The steel ball ad-
heres to the magnet, and, by pulling on the wire, it can be
lifted to the top of the hole (H). At this point, the ball is
stopped by the aluminum insert, the magnet is pulled away
from the ball, and the ball falls 66.5 mm onto the sample
surface (I). Seismic waves radiated from the point of impact
propagate through the sample and are recorded by piezoelec-
tric sensors (PZb1–PZb5) glued directly on the granite sam-
ple. The ball imposes some force to the sample at position
(H) when it is pulled away from the magnet. This force acts
too slowly to generate kilohertz-frequency seismic waves,
and it is separated in time by the >100 ms of time spent in
the air as the ball falls from position (H) to the location of
impact at position (I), so it does not contaminate recorded
ground motions.

EGF and Test Spectra Sext�f� and Sint�f�
We compare signals from the ball impact described above

to those from AEs located near the center of the test sample.
Because ball impact and AEs are essentially collocated, this

Figure 2. (a) Photo of the granite sample and sensors. (b) Schematic of the test sample shows the saw-cut simulated fault (dashed line)
that slips to produce AEs. (c) The calibration sample contains a cavity in which the ball is dropped by means of a tiny magnet attached to a
wire (see the Example 1: Triaxial Apparatus section). Piezoelectric AE sensors are shown as cylinders (PZ1–PZ16 and PZb1–PZb5). As
depicted in the inset of (a), each sensor consists of a cylindrical piezoceramic element (i) 6.35 mm in diameter and 2.54 mm thick and
composed of lead–zirconate–titanate (PZT). This is soldered inside a brass cup (ii) that is machined to match the sample curvature and
is glued directly on the granite sample (iii). A spring supplies force to the back of the PZT element, and a teflon insulator (iv) separates
the signal (v) from the ground (vi). When inside the pressure vessel, confining fluid fills the inside of the brass cup. The color version of this
figure is available only in the electronic edition.
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ensures that signals recorded from ball impact and AEs have
experienced nearly identical wave propagation and instrument
response effects. Though the radiation patterns of the impact
and AEs are different, we minimize these differences by deriv-
ing spectra from the average of signals from many sensors,
and we choose combinations of sensors with source-to-sensor
ray-path lengths and incidence angles that are similar between
the ball drop and the AE.

In this article, spectra are obtained from the absolute
value of the Fourier transform of a section of a recorded wave-
form that is centered on the first-wave arrival and tapered with
a Blackman–Harris window, as depicted in Figure 3. This is
compared to noise spectra derived using a window of identical
length and taper but from a section of the recorded waveform
before the first-wave arrival. We analyze spectra obtained from
windows of various lengths (Twind � 3:3, 6.6, 13.1, 26.2 ms,
etc.), and we keep only spectral estimates in a frequency band

where estimates are consistent over multiple time windows
and have sufficient signal-to-noise ratio (SNR). Signal sec-
tions are relatively long and include both P and S arrivals as
well as coda. Spectra are resampled into equal intervals in log
frequency at Δ log10�f� � 0:025 or 0.05. Each resampled
spectral estimate (shown as symbols in Figs. 4, 5, and 6) is the
average of spectral estimates from at least two Fourier fre-
quencies. For cases for which SNR is favorable even at the
lowest frequencies, the lower limit of spectral estimates is
fmin � 20=Twind. The upper bound of spectral estimates is al-
ways limited by SNR rather than recording bandwidth. We are
careful to use identical windowing techniques on both the ball
drop (EGF) and AE (test) data.

Figure 4a shows the amplitude of raw spectra Sint�f� of
two different AE events located close to the center of the
sample. These spectra are shown with corresponding noise
spectra to illustrate the frequency-dependent nature of sig-
nal-to-noise ratio. The spectra shown are the average of spec-

Figure 3. Illustration of windowing technique for obtaining
spectra. Spectra are derived from sections of recorded signals
(black) centered on the first-wave arrival and tapered with a Black-
man Harris window. This is compared to noise spectra derived from
an earlier part of the signal. We always compare spectral estimates
derived from time windows of various lengths Twind. Four example
window lengths are shown. For the (a) small ball drop and (b) small
AE event, we show Twind � 6:6 and 13.1 ms. For the largest labo-
ratory-generated seismic events, such as the stick-slip event shown
here, we employ longer time windows. The three example events
shown were generated in the large biaxial apparatus. Following
the notation of McLaskey et al. (2014), events are labeled by their
timing relative to the initiation of the stick-slip instability. For exam-
ple, SE12Nov2012FS-46 is a foreshock that occurred 46 ms before
the initiation of the twelfth stick-slip instability of a sequence gen-
erated in November 2012. The source locations of the (a) ball impact
and (b) small AE are depicted in Figure 7, and the signals shown are
the recordings from sensors PZ4 and PZ5, respectively. A zoom in of
the first arrivals of these signals is shown in the insets. The color
version of this figure is available only in the electronic edition.

Figure 4. (a) Spectra of two collocated AEs (diamonds) and a
collocated ball impact (circles) are shown against corresponding
noise spectra (lines without symbols near the bottom of the plot).
The theoretical source spectrum of the ball impact derived fromHertz
theory is shown in light gray. Also shown is the instrument-apparatus
response spectrum, which is derived by dividing the raw spectrum of
the ball impact by the theoretical spectrum of the ball impact. (b) The
spectra of the two AEs are offset vertically to match the ball-impact-
derived instrument-apparatus response spectrum in the low-frequency
range in which there is good signal-to-noise ratio. This offset is used
to determine the seismic moment of the AEs from the change in mo-
mentum of the ball impact. The color version of this figure is avail-
able only in the electronic edition.
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tra derived from 11 different sensors’ recordings. The 11 sen-
sors have an average source-to-sensor path length of 58 mm
and average incidence angle of 49°.

Figure 4a also shows the amplitude of the raw spectrum
Sext�f� of a ball impact performed inside the calibration sam-
ple at 40 MPa confining pressure. In the frequency band be-
low f0, spectra derived from signals from different ball drops
are identical to within 2 dB, as described in Figure 5. Above
f0, spectral amplitudes at a given frequency may vary by as
much as 10 dB between different ball drops performed under
nominally identical conditions (presumably due to variation
in the details of the impact, such as the effects of microscale
surface topography and surface contaminants). To obtain
more stable spectral estimates, we calculate spectra Sext�f�
from the average of spectra from five different ball drops.
In addition to averaging over five ball drops, Sext�f� shown
in Figure 4 is the weighted average of spectra estimated from
recordings at three stations (PZb1, PZb2, and PZb3, see
Fig. 2c). The weighted average ray-path length (59 mm)
and incidence angle (50°) are nearly identical to those from
signals used to calculate the spectra of the AE signals Sint�f�.

Figure 4a also includes F̂�f� � F�f�=Δp, which is the
spectrum of the impact source that we calculated theoreti-
cally using Hertz theory (equation 17) for the characteristics
of the current ball drop (4.76 mm diameter steel ball dropped
66 mm onto granite) normalized by its long-period level
Δp � m�v0 � vf� � 1 − 10−3 N·s. Here, m is the mass
of the 4.76 mm diameter ball (0:432g), v0 is the incoming
velocity of the ball, and vf is the rebound velocity of the ball.
We calculate v0 � 1:2 m=s from the 66.5 mm drop height,

and we estimate vf � 1:0 m=s from the 209 ms of travel time
in air between the first and second bounces of the ball, which
we can determine based on a long-time recording of seismic
waves generated from two successive bounces. (Time win-
dows used to obtain spectra include only one bounce.)

Instrument-Apparatus Response and Absolute
Moment

The instrument-apparatus response spectrum Ψ̂ext�f� is
derived from equation (12)

Ψ̂ext�f� � Sext�f�=F̂�f� � ΔpΨext�f� �18�
and is also shown in Figure 4.

Figure 4b shows Ψ̂ext�f� alongside the raw spectra
Sint�f� of the two AEs. The slopes and shapes of these spectra
are similar, and the AE spectra have been offset vertically by

31 and 55 dB to match Ψ̂ext�f� at low frequencies. (Only the
frequency band with sufficient SNR is shown. Also note that

the spikes in Ψ̂ext�f� at about 150 and 200 kHz are the result
of troughs in the ball drop spectrum F�f� that have not been
entirely erased by spectral resampling.) The seismic moment
of the AEs can be calculated from the vertical offset between
the AE spectra and the ball-drop-derived instrument-apparatus

response spectrum Ψ̂ext�f�. To accomplish this, we substitute
equation (9) into equation (11) to find

Sint�f� � M0Ψint�f�; f < f0: �19�
Then, we substitute equation (16) into equation (18) and di-
vide the result by equation (19) to find

Ψ̂ext�f�
Sint�f� � ΔpΨext�f�

M0Ψint�f� �
ΔpCF _M

M0

: �20�

We then replace variables with numerical values and solve for

M0. For the larger AE, Ψ̂
ext�f�=Sint�f� � 31 dB � 35 (20 dB

equals a factor of 10), so M0 � Δp × CF _M=35 �
1 mN·s × 10 km=s=35 � 0:3 N·m. We use the relation
M � 2=3 × log10�M0� − 6:067 (Hanks and Kanamori, 1979)
to find the AE moment magnitude M −6:4. Similarly, the
smaller AE has a moment of 0:02 N·m (M −7:2).

As described in the Appendix, we find that CF _M is ap-
proximately equal to twice the wave velocity. Because spec-
tra are derived from the Fourier transforms of time windows
that include both P and S waves, we choose the average of
the P-�cP� and S-wave velocities (cS) and calculate a force-
moment-rate constant CF _M � 2�cP � cS�=2 � 10 km=s for
the Westerly granite under 40 MPa confining pressure.

Effects of Confining Pressure

The calibration sample described above also allows us to
assess how the instrument-apparatus response spectrum
Ψext�f� changes with confining pressure and with the pres-

Figure 5. The spectra of five ball drop sources performed in the
calibration sample inside the pressure vessel of a triaxial apparatus at
40 MPa confining pressure. The lower curves without symbols are
corresponding noise spectra. The shape of the theoretical source spec-
trum (light gray) is shown for comparison. Below the corner fre-
quency, the spectra of all ball drops are identical to within 2 dB.
Above the corner frequency, spectra vary by up to 10 dB, so averages
of five ball drops are shown in Figures 4 and 6b. The color version of
this figure is available only in the electronic edition.
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ence of confining fluid. Because the force-time history f�t�,
that the ball imposes on the sample, is essentially constant
between different ball drops, changes in recorded signals
sext�t� can be attributed to changes in instrument-apparatus
response ψ ext�t�. Raw recorded signals and spectra are
shown in Figure 6 for ball drops conducted at different values
of confining pressure.

The recorded waveforms show that increasing confining
pressure has two main effects. First, the velocity in the ma-
terial increases, as evidenced by earlier wave arrivals and an
overall contraction of the waveforms in time (Fig. 6a). Second,
the amplitude of the signals decreases. In the frequency do-
main, increased confining pressure appears to diminish the
amplitude of resonant peaks in the spectra (at 22, 40, and
100 kHz). The largest changes occur when confining pressure
is increased from 0 to 10 MPa. Further increases from 10 MPa
to 40 MPa introduce less significant changes. (Note that
although spectra shown in Figure 6b are the average of spectra
derived from PZb1 through PZb5, spectra derived from indi-
vidual sensor’s recordings have nearly identical features.)

Overall, we find that confining pressure and confining
fluid have relatively minor effects on sensor response and
primarily appear to dampen resonant peaks, at least in our
∼5–500 kHz reliable frequency band, from which we have
good SNR. This suggests that bench-top calibrations per-
formed when the sample is outside the pressure vessel may
be adequate for a rough (order of magnitude) calibration of
these particular AE sensors.

Example 2: Large-Scale Biaxial Apparatus

Next, we demonstrate the use of the empirical calibration
technique on a large, biaxial apparatus shown in Figure 7. The
apparatus accommodates a granite sample that is 1.5 m square
and 0.4 m thick. Deformation is accommodated on a 2 m long
simulated fault that is saw-cut diagonally through the sample,

shown as the dashed line in Figure 7. The sample is instru-
mented with 15 Panametrics V103 piezoelectric sensors. Fur-
ther details are described inMcLaskey and Kilgore (2013) and
McLaskey et al. (2014).

In the previous example, we estimated the instrument-
apparatus response spectrum Ψext�f� from a single ball drop
with a given mass, but here we record many different ball
drops with a wide variety of ball sizes. This allows us to
broaden the frequency band over which the instrument-
apparatus response can be reliably estimated. Second, and
for convenience, we analyze AE and ball drop EGF pairs that
are not precisely collocated. We do not drill a hole in the
sample, and hence the ball impact occurs on the top surface
of the sample, where it is easily accessible, and AEs occur on
the saw-cut simulated fault. This can potentially decrease the
accuracy of the method, but we argue that the technique is still
useful for estimating the general features of the AE source
spectra, especially if estimates can be made over a very broad
frequency band. As illustrated in Figure 7, we take advantage
of the symmetry of the test sample to provide ray paths that are
geometrically similar for ball drops and corresponding AEs.
By choosing sets of signals with average ray-path lengths
and takeoff angles that are similar between the ball impact
and AE sources, as depicted in Figure 7, we maintain the gen-
eral validity of equation (16). Further details about steps taken
to reduce errors associated with AE-ball-drop EGF pairs that
are not collocated are described in the Applicability of
Ψint�f� � CF _MΨ

ext�f� section.

Instrument-Apparatus Response

Figure 8a shows the amplitude of spectra Sext�f� of col-
located ball impacts of various sizes, listed in Table 1. All
balls are dropped from a height of 1 m onto the top surface
of the granite sample while 5 MPa normal stress and 3 MPa
shear stress is applied to the fault to simulate actual test

Figure 6. The ball drop allows us to assess how wave propagation and sensor response are affected by increases in confining pressure.
(a) Raw waveforms and (b) spectra show that increasing confining pressure increases the velocity in the sample and dampens resonant peaks
in the sensor response spectrum. In (b), the spectral estimates (symbols) are shown relative to corresponding noise spectra (lower four curves
without symbols). The enhanced damping could be the result of improved acoustic coupling between the back of the PZT element and the
confining oil. The shape of the theoretical ball impact source spectrum F̂ �f� (offset vertically) is shown in light gray for reference. The color
version of this figure is available only in the electronic edition.
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conditions. Figure 8b shows the same spectra, but the ampli-
tudes of each of the spectra are offset by the respective Δp
calculated for each particular ball drop. For frequencies
sufficiently below f0, all the offset spectra collapse to a sin-
gle curve that defines the instrument-apparatus response
spectrumΨext�f�. (Mathematically, we substitute equation 10
into equation 7 and Fourier transform the result to find
Ψext�f� � Sext�f�=Δp.) We combine the results from the dif-
ferent ball sizes to construct an estimate of Ψext�f� over a
wide frequency band in a method inspired by that of Baltay
et al. (2010). Next, we divide individual raw spectra (Sext�f�)
by this newly derived instrument-apparatus response spec-
trum (Ψext�f�) to obtain an estimate of the source spectra
F�f�. Figure 8c shows F�f� of four ball impact sources of
different sizes alongside the theoretical impact force spectra
derived from Hertzian theory (equation 17).

Source Spectra of Laboratory-Generated Earthquakes

Figure 9a shows the amplitude of spectra Sint�f� of eight
laboratory-generated seismic events of various sizes. Al-
though the smaller events ruptured localized patches of the
fault surface and can be classified as AEs, we refer to them as
laboratory-generated seismic events rather than simply AEs:
the two largest amplitude events are from the complete rup-
ture of the entire 2 m long simulated fault and are generally
referred to as stick-slip instabilities. The smaller events are

from foreshocks and aftershocks of various sizes that occur
in the milliseconds before and after the stick-slip instability.
The rupture areas of these events are fully contained within
the fault surface and do not break out to the fault boundaries.

Figure 9b shows the spectra presented in Figure 9a di-
vided by the instrument-apparatus response Ψext�f� derived
from ball impact Sint�f�=Ψext�f� � F�f�. (This result is ob-
tained by substituting equation 15 into equation 14 and Fou-
rier transforming the result.) The left axis of Figure 9b shows
the equivalent momentum change Δpequiv that corresponds
to the low-frequency level Ω0 of F�f� of the laboratory-gen-
erated events. Using equation (13), we can convert F�f� into
_M�f�. The right axis label shows M0 � CF _MΔpequiv. (Here,
we use CF _M � 2�cP � cS�=2 � 7 km=s, for Sierra White
granite samples under ∼5 MPa stress levels.) To aid interpre-
tation, we also display four theoretical source spectra derived
from the Brune (1970) earthquake source model

_MBrune�f� � M0=�1� �f=f0�2�: �21�

From the spectra shown in Figure 9b, we find that the
largest events that rupture the entire fault haveM0 of approx-
imately 2 × 105 N·m (M −2:5). The largest foreshocks
(Patch P1 foreshocks in the terminology of McLaskey and
Kilgore, 2013) have M0 of about 100 N·m (M −4:5 to
M −5). Smaller foreshocks and aftershocks have M0 rang-
ing from 0.1 to 1 N·m (M −6 to M −7) and are similar in

Figure 7. (top) A photo and a sketch of the large granite sample in a biaxial loading frame. Triangles denote the locations of piezoelectric
AE sensors. (bottom) A zoom in on the fault cross section showing sensor locations and example source locations. The ball (circle) is dropped
from a height of one meter onto the top surface of the specimen (four-pointed star) and AEs under analysis occur on the fault surface (six-
pointed star). Although the ball drop and AEs are not collocated, we derive spectra from signals from sensors with ray-path lengths, angles,
and propagation characteristics that are similar between the ball drop and AE. The color version of this figure is available only in the elec-
tronic edition.
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size to the AEs generated with the triaxial apparatus dis-
cussed previously.

Empirical Estimation of CF _M

The large and simple geometry of the 2 m sample also
facilitates quantitative time-domain analysis of the smaller
foreshocks and aftershocks using the waveform modeling
approach of McLaskey et al. (2014), and this allows us to
empirically estimate the scale factor CF _M. The waveform

modeling approach requires the estimation of Green’s func-
tions and the sensors’ instrument response function i�t�.
These are needed for the construction of synthetic seismo-
grams that can be compared to recorded signals. We first de-
termine M0 from waveform modeling (see McLaskey et al.,
2014). Then we estimate the equivalent change in momen-
tum Δpequiv from the low-frequency level of the spectra as
plotted in Figure 9b. Once both Δpequiv and M0 have been
estimated for a single event, we estimate CF _M from equa-

Figure 8. Spectra from a suite of collocated ball drops with different sized balls. (a) Spectra shown are the amplitude of the average of
spectra derived from recordings from three sensors with source-to-sensor distances of 0.63, 0.44, and 0.53 m. Larger sized balls have sys-
tematically larger low-frequency amplitudes, and a lower corner frequency f0. (b) When the spectra are offset vertically by the measured
change in momentum of each ball, the spectra at frequencies less than f0 collapse to a single curve that defines the instrument-apparatus
response spectrum. (c) The instrument-apparatus response spectrum is removed from the spectra of four different ball drop sources to produce
an estimate of the true source spectra. These estimates are shown alongside theoretical spectra derived from Hertz theory (thin black lines).
The color version of this figure is available only in the electronic edition.

Table 1
Properties of Ball Drops Shown on Figure 8

Ball Diameter (mm) Material Mass (g) Corner Frequency (kHz) Change in Momentum (N·s) Equivalent M

0.80 Steel 0.0021 300 1:6 × 10−5 −6.7
1.00 Glass 0.0013 345 9:8 × 10−6 −6.8
1.58 Steel 0.016 156 1:2 × 10−4 −6.1
2.38 Steel 0.055 100 4:1 × 10−4 −5.7
4.76 Steel 0.44 52 3:3 × 10−3 −5.1
6.35 Steel 1.05 39 7:9 × 10−3 −4.9
7.94 Steel 2.06 31 1:5 × 10−2 −4.7

19.1 Steel 28.4 13 2:1 × 10−1 −3.9
25.4 Steel 67.4 9.7 5:0 × 10−1 −3.7

Hammer strike Steel n/a n/a 2:7 × 10�0 −3.2
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tion (13). We have applied this method to 13 small events
(M −7 toM −5:5) reported in Table 1. CF _M estimates range
from 3 to 26 km=s with a median value of 7:5 km=s, which is
in good agreement with our theoretical estimate (7 km=s),
based on the wavespeed of the granite.

Source Dimension, Stress Drop, and Radiated Energy

Many of the general features of the source spectra of AEs
and other laboratory-generated seismic events are similar to
those expected for natural earthquakes. At low frequencies, spec-

tra are approximately flat, and at high frequencies they fall off at
a rate close to f−2. The larger events have corner frequencies that
are well within our reliable frequency band, permitting us to es-
timate source dimension, stress drop, and radiated energy.

We assume the Brune (1970) relationship between f0
and source dimension r0 � 2:34 × β=�2πf0� and calculate
stress drop Δσ � 7=16M0r−30 . To estimate radiated energy
Es, we extrapolate the low-frequency level of _M�f� to low
frequencies and the f−2 fall-off to high frequencies and then
follow equation (16) of Singh and Ordaz (1994),

Figure 9. (a) The amplitude of raw spectra from eight laboratory-generated seismic events of different sizes. The two largest events are
from stick-slip instabilities that rupture the entire 2 m long fault. The smaller events are foreshocks (FS) and aftershocks (AS), which occur in
the milliseconds surrounding the large instabilities. (b) The same spectra are divided by the instrument-apparatus response spectrum (from
Fig. 8) to obtain estimates of source spectra. Thick gray lines are example Brune source models (see the Source Dimension, Stress Drop, and
Radiated Energy section). The event naming scheme is consistent with Figure 3 and McLaskey et al. (2014). The color version of this figure
is available only in the electronic edition.
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Es �
4π

5ρβ5

Z ∞
0

f2 _M�f�2df; �22�

in which, for the granite, the shear-wave velocity β � 2700 m=s,
density ρ � 2670 kg=m3, and shear modulus μ � 20 GPa.
From Es, we calculate apparent stress τa � μEs=M0 and
scaled energy ~e � Es=M0. (Equation 22 is strictly valid only
for spectra derived from S waves whereas spectra reported
in this article are obtained from windows that include both
P and S waves. Because most of the radiated energy is con-
tained in the S waves, we believe this discrepancy is minor.)

The largest AE events (M −4:5) with rupture areas that are
contained within the interior of the fault arewell fit by the Brune
model. They have 0.1 MPa stress drops, estimated source radii
of∼80 mm, and about 1 × 10−4 J of radiated energy. For many
of the smaller events, the corner frequency implied by fitting
with the Brune model is close to the upper limit of our
reliable frequency band (200 kHz), so source parameters are
not well constrained. If the Brune models shown in Figure 8b
are appropriate, they imply stress drops of about 0.05–5 MPa,
and source dimensions of 3–10 mm, as described in Table 2.We
believe that the large variation in stress drops is an accurate re-
flection of the variability of AEs produced by this sample, be-
cause the twomethods (waveformmodeling and spectral fitting)
produced similar results. On average, though, the stress drops
derived from spectral fitting are about a factor of 10 lower than
those estimated from waveform modeling (Table 2), and this
systematic difference may indicate bias in one or both of the
two methods.

Source spectra from the stick-slip events that rupture the
entire fault appear to have deficient spectral amplitudes near
the corner frequency and have a somewhat more variable fall-
off at higher frequencies (2 kHz < f < 200 kHz), though
f−2 is still an adequate approximation. These differences are
likely due to edge effects and because the stick-slip events
are controlled by the stiffness of the apparatus rather than
the rigidity of the rock. This topic will be the focus of a future
study.

Discussion

Instrument Response from Ψext�f�
If we assume that the spectra of the Green’s functions

Gext
ki �f� are approximately flat, then the shape of the instru-

ment-apparatus response Ψext�f� is controlled primarily by
instrument distortions Ik�f�. In this case, we can use our es-
timates of instrument-apparatus response to make statements
about the general features of a sensor’s response spectrum
such as whether sensor output is proportional to displace-
ment, velocity, or acceleration. We believe that the above ap-
proximation may be appropriate (at least to a factor of 10) for
the two experimental configurations described in this article
because there is no obvious resonance of the sample in our
frequency band. Our results suggest that the sensors in the
triaxial apparatus behave approximately as accelerometers
(Ψext�f� has a slope of ∼40 dB=decade) in the 20–200 kHz
frequency band. Similarly, the Panemetrics sensors used on
the biaxial apparatus behave approximately as accelerometers

Table 2
Properties of Laboratory-Generated Seismic Events from Experiments on the Large Biaxial Apparatus

From Waveform Modeling From Spectral Fitting

Event Name
σn

(MPa)

Distance
Along

Strike (m)
Depth
(m)

t0
(μs)

_mmax
(kN·m=s)

M0

(N·m)
Δσ

(Mpa) M Δpequiv (N·s)
Δσ

(MPa) M
CF _M
(km=s)

SE2Jan2012 FS-17 (P4) 5 1.2 0.29 3 60 0.1 1.6 −6.7 1:3 × 10−5 0.3 −6.8 7.9
SE12Jan2012 FS-43 (P1) 5 1 0.29 n/a n/a n/a n/a n/a 1:0 × 10−2 0.05 −4.8 n/a
SE2Jan2012 FS-33 (P1) 5 1 0.29 n/a n/a n/a n/a n/a 1:6 × 10−2 0.12 −4.7 n/a
SE7Jan2012 FS-20 (P1) 5 1.01 0.29 n/a n/a n/a n/a n/a 2:4 × 10−2 0.12 −4.6 n/a
SE12Jan2012 FS-34 (P2) 5 1.09 0.32 3 250 0.4 6.7 −6.3 2:0 × 10−5 1 −6.6 20.9
SE12Jan2012 FS-46 (P0.5) 5 1 0.34 9.5 174 0.9 0.5 −6.1 3:6 × 10−5 0.03 −6.5 25.8
SE12Nov2012 FS-46 4 0.5 0.40 3.5 430 0.8 8.4 −6.1 1:6 × 10−4 0.03 −6.0 5.3
SE12Nov2012 4 n/a n/a n/a n/a n/a n/a n/a 1:6 × 101 0.37 −2.7 n/a
SE12Nov2012 AS+49 4 1.24 0.17 5 300 0.8 2.9 −6.1 1:2 × 10−4 0.61 −6.1 7.0
SE16Nov2012 FS-17 6 1.25 0.38 4.5 2160 5.4 25.5 −5.6 8:0 × 10−4 3 −5.6 6.8
SE17Nov2012 6 n/a n/a n/a n/a n/a n/a n/a 2:6 × 101 1.4 −2.6 n/a
SE26Nov2012 FS-85 6 0.63 0.36 5.5 3700 11 29.3 −5.4 1:0 × 10−3 4 −5.5 11.3
SE26Nov2012 FS-39 6 1.26 0.33 5 84 0.2 0.8 −6.5 2:9 × 10−5 0.5 −6.5 8.1
SE26Nov2012 FS-5 6 1.66 0.19 5.5 300 0.9 2.4 −6.1 2:0 × 10−4 1.5 −6.0 4.6
SE26Nov2012 AS+48 6 1.31 0.23 4.5 25 0.06 0.3 −6.9 2:0 × 10−5 1 −6.6 3.1
SE26Nov2012 FS-27 6 1.43 0.11 3 25 0.04 0.7 −7.0 5:6 × 10−6 0.04 −7.0 7.5
SE25Nov2012 FS-148 6 −0.38 0.36 4.5 3600 9.0 42.6 −5.4 1:0 × 10−3 6 −5.5 9.0
SE25Nov2012 FS-53 6 −0.4 0.26 4 180 0.4 2.7 −6.3 6:3 × 10−5 2 −6.3 6.4

Columns are, from left to right: event name, fault average normal stress, location of the event along strike, depth of the event, width of _m�t�, height of _m�t�,
seismic moment derived from t0 and _mmax, stress drop derived from t0 and M0, magnitude derived from M0, equivalent change in momentum from spectral
fitting, stress drop from spectral fitting, magnitude derived from Δpequiv assuming CF _M � 7 km=s, and scale factor derived from Δpequiv andM0. The event
naming scheme is consistent with Figure 3 and McLaskey et al. (2014).
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in the 2–20 kHz frequency band and approximately as dis-
placement sensors in the 20–200 kHz band.

Careful analysis of Figures 8 and 9 show that the distinc-
tive notch in the spectra at 20 kHz visible in Figures 8a,b and
9a, is likely due to an antiresonance in the Panametrics V103
sensor response, and it is effectively removed in Figures 8c
and 9b. In addition, Figure 8a shows an apparent corner fre-
quency f0 for the largest events around 10 kHz, but this is an
artifact introduced by a bend in the instrument-apparatus re-
sponse spectrum Ψext�f� at that frequency. The true f0 is
closer to 1 kHz as depicted in Figure 9b.

Applicability of Ψint�f� � CF _MΨext�f�
For the triaxial apparatus, the similarity in slope and

shape of the spectra in Figure 4b gives us confidence that
equation (16) (Ψint�f� � CF _MΨext�f�) is at least approxi-
mately appropriate. We also compared spectral estimates
from AEs that were not collocated with the ball impact. In
general, we found only about 10 dB variations in the
5–400 kHz frequency band considered. This indicates that,
for this experiment, the amplitude of the instrument-appara-
tus response spectrum (jΨint�f�j) is insensitive to ∼100 mm
changes in source location, as long as spectra are obtained
from the averages of many sensors’ signals.

For the large biaxial apparatus, we studied the variability
of jΨext�f�j as a function of different ray paths and with dif-
ferent source and sensor locations. We found three main fac-
tors that can significantly affect spectral estimates. First,
signals recorded from sensors on the same surface as the ball
impact location have large amplitude Rayleigh waves and
enhanced high-frequency content (by 10–40 dB in the
20–100 kHz range) relative to signals the ray paths of which
traverse the thickness of the sample. Second, ray paths that
traverse the fault (even with the applied 5 MPa normal stress)
have spectra that are diminished 5–10 dB in a frequency
band above ∼50 kHz. Third, at frequencies higher than about
20 kHz, ∼100 mm variations in ray-path lengths also bias
jΨext�f�j estimates by a maximum of ∼20 dB at the highest
frequencies (200 kHz). To avoid these three cases, Ψext�f�
was calculated only from signals with ray paths that traverse
the thickness of the sample (thus eliminating Rayleigh
waves) but do not traverse the fault. In addition, we derived
raw spectra of both AEs and ball impact from recordings
from sets of sensors with similar ray-path lengths and takeoff
angles, as depicted in Figure 7. This approach works well for
smaller events, but for the large stick-slip events that rupture
the entire simulated fault, the source is distributed and path
lengths and takeoff angles are only grossly approximated.
We estimate that, using the above techniques, jΨext�f�j of
the large stick-slip events is accurate to �10 dB in the
∼2–200 kHz frequency band considered. Accuracy of spec-
tral estimates of the smaller events is probably better.

For f < 1 kHz, wavelengths are longer than the sample
dimensions, and all sources are approximately collocated. In
this frequency range, spectral differences between different

source and sensor locations are likely due to resonance of the
sample and apparatus. Laboratory-generated seismic events
and ball impact likely excite somewhat different resonant
modes, yet we do not find any indication that such modes
are dominant enough to severely affect the spectra. In total,
we believe that errors associated with Ψint�f� � CF _MΨ

ext�f�
probably cause the �10 dB deviations from theoretical
source spectra shown in Figure 9b compared to �4 dB de-
viations in Figure 8c. Because the frequency band considered
is relatively wide, estimates of general features of _M�f� such
as the low-frequency level M0, and the high-frequency fall-
off are still relatively robust despite the �10 dB uncertainty
in individual spectral estimates.

Assumptions and Uncertainty

In many ways, the empirical technique is simpler than
other calibration techniques, and we believe that moment es-
timates derived from this calibration scheme are robust. For
example, the calibration is performed in situ, and we make
no assumptions about reciprocity, sensor coupling, sensor
aperture effects, or inelastic wave propagation effects such
as attenuation and scattering. Modeling of wave propagation
is not required, so the calibration can be extended to lower
frequencies that are more difficult to model for small samples
or complicated geometries. Finally, for the experiments on
the large biaxial apparatus, we used only the ball drop spectra
in a frequency band below the corner frequency, so the ac-
curacy of the method does not rely on the validity of Hertz
theory of impact.

Instead, the empirical calibration technique relies on dif-
ferent simplifying assumptions such as the minimization of
radiation pattern effects by averaging over multiple ray paths
and the applicability ofΨint�f� � CF _MΨ

ext�f� (equation 16),
as described in the previous section. We estimate that these
assumptions cause uncertainty of individual spectral esti-
mates to be about�10 dB. Uncertainty in moment estimated
from the low-frequency level of these spectra will depend on
the location of the corner frequency with respect to the re-
liable frequency band, but for most of the events shown in
Figure 9 and reported in Table 2, we believe moment esti-
mates are accurate to �6 dB, or �0:2 magnitude units. Un-
certainty from variation in ball impacts is on the order of
�1 dB (for frequencies below the corner frequency) and
is therefore small compared to other sources of uncertainty.

There are additional uncertainties associated with the
calculation of CF _M such as the free surface effect, which is
approximated by gextki �t� ≈ 2gintki �t� for normal incidence
(equation A5), the wave velocity (equation A7), and the aver-
aging of radiation patterns (Xj≡Ξi=Λij ≈ 1). We estimate that
these approximations could introduce an additional factor of
two (6 dB) uncertainty but are probably small compared to the
uncertainties in spectral estimates described above.

Despite the approximations, we believe that the methods
and results described here indicate that the ball impact em-
pirical calibration technique can serve as an effective method
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of obtaining absolute moment to within � a factor of two
(�0:2 magnitude units). A similar technique that employs
a more massive ball might be adapted for absolute calibration
of microseismic networks in mines.

Conclusion

We have demonstrated a method to determine the abso-
lute moment of AEs and other laboratory-generated seismic
events with an uncertainty of �0:2 magnitude units. The ad-
vantage of this method is that it is performed in situ, and no
modeling of wave propagation or assumptions about attenu-
ation or sensor coupling are required. The method relies on
the principle of an empirical Green’s function, but instead of
using a small, collocated seismic event of unknown absolute
magnitude, the method employs a ball impact as a well-
defined reference source.

The ball impact source occurs on the external surface of
the sample and is represented by forces, whereas most seis-
mic events occur within the interior of a sample (or the earth)
and are represented by force couples that are quantified by
their seismic moment. To quantitatively relate these two
classes of sources, we derived equations that link the seismic
moment of an internal source (i.e., earthquake, acoustic emis-
sion, or underground explosion) to the change in momentum
of an external source (i.e., a ball impact or meteor impact). We
found that for frequencies that are sufficiently below the cor-
ner frequencies, these sources are related by a constant, CF _M,
which is equal to twice the speed of sound in the material from
which the sources originate.

We demonstrate the calibration method for two different
rock deformation experiments. These experiments employ
different loading frames, samples, stress levels, and record-
ing equipment. The first experiment demonstrates the in situ
calibration of an AE monitoring system under 40 MPa con-
fining pressure. In the second experiment, a 2 m long fault in
a biaxial loading configuration is used to generate a collec-
tion of seismic events that are analyzed both by the current
method and by means of waveform modeling, which is de-
scribed elsewhere. This comparison is used to empirically
validate the theory. In addition to seismic moment, the cal-
ibration technique facilitates the estimation of other seismic
source parameters such as source dimension, stress drop, and
radiated energy. The methodology described here provides
a foundation for future studies that may explore how these
seismic source parameters relate to other physical variables
such as stress levels, fault surface roughness, and loading
conditions.

Data and Resources

Data used in this article were acquired during laboratory
experiments at the U.S. Geological Survey in Menlo Park,
California. Data can be made available by request.
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Appendix A

This appendix outlines a theoretical derivation of the
force-moment-rate constant CF _M that relates the force-
time function of an external seismic source (ball impact)
to the moment-rate function of an internal seismic source
(acoustic emission [AE] or earthquake). We start by sub-
stituting equation (4) into equation (2). Noting that
mij�t�⊗gintki;j�t� � _mij�t�⊗ R

gintki;j�t�dt, we find

_m�t� � sint�t�⊗�iintk �t�⊗Λij

Z
gintki;j�t�dt�−1: �A1�

Similarly, by substituting equation (5) into equation (3), we
find

f�t� � sext�t�⊗�iextk �t�⊗Ξigextki �t��−1: �A2�
We substitute the above two equations into equation (13),

CF _M � sint�t�⊗iextk �t�⊗gextki �t�Ξi

sext�t�⊗iintk �t�⊗ R
gintki;j�t�dtΛij

: �A3�

We choose a geometry such that the path length and an-
gle of incidence is similar between internal and external
sources such that iextk �t� � iintk �t�. Then, we substitute

uintk �t� � sint�t�⊗iintk �t� and uextk �t� � sext�t�⊗iextk �t� into
the above equation and recall that equation (13) only holds
for the special case when uextk �t� � uintk �t�, to find

CF _M � Xjgextki �t�R
gintki;j�t�dt

; �A4�

in which Xj � Ξi=Λij. Given the similar geometry noted
above, we make the approximation

gextki �t� ≈ 2gintki �t�; �A5�

in which the factor of 2 comes from the free surface ampli-
fication. This approximation will certainly be violated if
Rayleigh waves or other surface waves have a major contri-
bution to gextki �t�. Substituting equation (A5) into equa-
tion (A4), we find

CF _M � Xjgextki �t�R
d�gextki �t�=2�=dxjdt

≈ 2Xj
dxj
dt

: �A6�

If we minimize the effect of radiation patterns by aver-
aging over multiple stations with good coverage of the focal
sphere, then Xj ≈ 1. In this case, equation (A6) becomes two
times the wave velocity in the material. If spectral estimates
are derived from a section of recorded signals that includes
only one particular wave phase (i.e., P wave) then the veloc-
ity of that wave phase should be used in equation (A6). In the
current case, spectra are derived from sections of recorded
signals that include P and S waves, so we choose the average
of the P- and S-wave velocities:

CF _M ≈ 2�cP � cS�=2: �A7�

Here, we also assume that the granite is approximately iso-
tropic. These assumptions could introduce additional uncer-
tainty of at most a factor of two.
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