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A generalized law for brittle deformation

of Westerly granite

David A. Lockner
U.S. Geological Survey, Menlo Park, California

Abstract. A semiempirical constitutive law is presented for the brittle deformation of intact
Westerly granite. The law can be extended to larger displacements, dominated by localized deforma-
tion, by including a displacement-weakening break-down region terminating in a frictional sliding
regime often described by a rate- and state-dependent constitutive law. The intact deformation law,
based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure P,, dif-
ferential stress o,, inelastic strain ¢g; and temperature T. The basic form of the law for deforma-
tion prior to fault nucleation is Ing;, = c—(E*/RT)+(0, /a0, )sin-«(ne; /2¢€,) where o, and g, are
normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and o is
a shape parameter. At room temperature, eight experimentally determined coefficients are needed to
fully describe the stress-strain-strain rate response for Westerly granite from initial loading to fail-
ure. Temperature dependence requires apparent activation energy (E* ~ 90 kJ/mol) and one addi-
tional experimentally determined coefficient. The similarity between the prefailure constitutive law
for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture sur-
faces suggests a close connection between these brittle phenomena.

1. Introduction

In this paper we present a semiempirical constitutive law for
the brittle deformation of Westerly granite. This generalized
rheologic model has a remarkably simple form considering
that it describes the interdependence of stress, strain, strain
rate, temperature and confining pressure for laboratory sam-
ples from initial loading to sample failure. We also extend the
law to describe localized deformation processes associated
with fault formation and frictional sliding. In this way, the full
deformation history, from initial elastic loading to frictional
sliding, can be described. Westerly granite was used as a
“model” rock in this study because it is a fine-grained, uni-
form, nearly isotropic rock that has an extensive history of
laboratory testing and can provide a high level of repeatabil-
ity under carefully controlled test conditions. In principle, the
deformation law can be adapted easily to other rock types.

The Mohr failure envelope (Figure 1) is a common failure
criterion used to relate shear and normal stress acting on the
failure plane that forms in a deformed sample. The observed
failure envelope is typically concave downward. This is true
for rocks in general and for Westerly granite in particular
[Jaeger and Cook, 1984; Lockner, 1995]. For simplicity, the
Mohr-Coulomb linearized failure criterion

T=S0+.uinto-n (1)

is often used to approximate the failure envelope [Jaeger and
Cook, 1984, p100], where S, is cohesion and iy, =tan¢ is
coefficient of internal friction. In standard rock deformation
experiments, T and G, are not controlled or measured directly.
In particular, the angle  that the eventual failure plane makes
with the principal compressive stress axis (sample axis) is not
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well constrained. It is found to vary by a few degrees between
repeated experiments and in larger samples will often rotate
during propagation of the fracture plane across the sample
[Lockner et al., 1992a]. The stresses measured directly in stan-
dard triaxial deformation experiments are confining pressure P,
(= 0, = 0;) and axial stress o, (all measured positive in com-
pression). The experimental data shown in Figure 1 are replot-
ted in Figure 2 with differential stress o, (= 0, - P,) plotted ver-
sus P. Recall that shear and normal stresses on the fracture
plane are obtained from

1%% sin(28) (2a)

c,=P, +%0A [1-cos(28)] . (2b)
A variety of empirical or semiempirical failure criteria such as
(1) have been proposed (see Lockner [1995] for a brief sum-
mary). These generally include a nonlinear term to match the
curvature of the observed failure envelope. In the present pa-
per, however, we will present a more general constitutive ex-
pression for brittle rock which describes the overall stress-
strain response of a sample and how it depends on strain rate,
temperature, and confining pressure. Such a constitutive law
should be able to predict failure envelopes as depicted in Fig-
ures 1 and 2.

In this paper we will not attempt to determine the full ten-
sor coefficients relating stress, strain, and strain rate compo-
nents. Instead, we will restrict ourselves to considering the in-
terdependency of only the axial components of stress, strain,
and strain rate. In the triaxial (axisymmetric) geometry, these
are principal stress and strain components and represent
maximum compressive stress and strain. A more generalized
tensor relation may be developed at a later time. An important
constraint of the axisymmetric test geometry is that the in-
termediate and minimum principal stresses are the same
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Figure 1.

MPa

Mohr diagram for intact Westerly granite (data from Byerlee [1967]) showing the variation of

shear strength as a function of normal stress on the eventual fracture plane. The failure envelope is characteris-
tically concave downward, although it is often approximated by a Mohr-Coulomb linear failure criterion.

(0, =03 =P.). While a limited number of studies have been
carried out on true triaxial machines, the effect that independ-
ent variation of ¢, has on brittle fracture is not fully under-
stood. We will show that in the axisymmetric case, the key
constitutive law parameters can be described as simple func-
tions of axial stress and confining pressure. When sufficient
data become available to extend the model, we expect that the
confining pressure dependence will be separable into func-
tions of 0, and O;.

As a first step in this approach, we developed a constitutive
law for creep in granite based on stress-stepping experiments
carried out between 65 and 90% failure strength [Lockner,
1993b]. This law was based on reaction rate theory and linear
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Figare 2. Failure envelope for Westerly granite plotting

peak differential stress (o,,) as a function of confining pres-
sure. Data are squares from Byerlee [1967], triangles from
Wawersik [1973], and circles from this study. Empirical quad-
ratic fit of P, versus o,, is also shown (equation (8)) which is
more satisfactory that fitting o, as a function of P..

fracture mechanics analysis of growth of idealized microcracks
embedded in an elastic medium. The law related strain rate to
stress and strain by considering corrosion reactions of water
attacking Si-O bonds at the tips of growing microcracks. It
had the general form

(£ —f(PcsaA’fv)]) 3

&, =&y, exp( .

where, as listed in Table 1, &, and &, are inelastic volumetric
strain and strain rate, £, is a reference strain rate, £ is appar-
ent activation energy, R is the gas constant, and 7T is absolute
temperature. The function f(F.,0,,&,) modifies the activa-
tion energy and reflects the influence of applied stress and
strain on the crack tip stresses. The model used analytic ex-
pressions developed by Ashby and Hallam [1986] which de-
scribed how remote compressive stresses are converted to ten-
sile stresses at crack tips of idealized microcracks. As derived
by Lockner [1993b], the dependence of f on the remote
stresses and volumetric strain can be expressed as:
F(P.,04.8) = file ) fo(ey)os = PI*. The derivation of (3) was
based on an assumption of isolated, noninteracting cracks.
This assumption appears valid for primary and secondary creep
phases in a constant stress experiment, or for stresses up to
approximately peak stress in a constant strain rate experiment
[Lockner et al., 1992b; Lockner, 1993a; Reches and Lockner,
1994; Moore and Lockner, 1995]. These studies have shown
that fault nucleation involves a change from predominantly
independent microcrack growth to a mode of cooperative
growth that takes over once cumulative crack densities are
high enough for microcracks to interact. This type of crack in-
teraction was not considered by Lockner [1993b], and conse-
quently, equation (3) was intended to describe transient or pri-
mary creep that occurs prior to fracture nucleation. We will in-
clude this transient creep response in our generalized constitu-
tive equation.

Static fatigue is another phenomenon well known in rock
mechanics and mining engineering [Griggs, 1939; Mould and
Southwick, 1959; Wiederhorn and Bolz, 1970; Scholz, 1972;
Wawersik, 1973; Cruden, 1974; Kranz, 1980; Kranz et al.,
1982: Lockner and Madden, 1991b; Lockner, 1993b]. It refers
to the delayed failure of rock or other brittle material when
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Table 1. Mathematical Symbols

Equation

Symbol First Used Definition

a (11)  log strain rate sensitivity of stress before faulting

e (25) log strain rate sensitivity of shear stress during fric-
tional sliding

by (25)  state sensitivity of shear stress during frictional slid-
Ing

E* (3)  apparent activation energy

k (23) machine/rock stiffness

(23)  sample length

m (12)  temperature dependence of a

P, (2)  confining pressure ( P, = 0, =05 in triaxial test)

r (5) reaction rate

R (3)  gas constant

S, (1)  cohesion

T (3)  temperature

t; 4) time to failure in constant stress test

u (22)  axial displacement
Vv (25)  sliding velocity on fault
y* (5)  apparent activation volume
o (10)  arbitrary constant; shape factor for stress-strain rela-
tion at constant strain rate
B (2)  angle between ¢, and fault plane
£, (22) elastic strain
£, (6)  inelastic axial strain, strain rate
£, (A1) inelastic strain when sample first attains frictional
strength
€, (A1) (inelastic strain at fault nucleation
&y, &, 3) inelastic volumetric strain and strain rate
er, & (22) total axial strain, strain rate
£, (9)  inelastic strain at peak stress in constant strain rate
test; function of P,
g, (6) reference state inelastic strain rate
[ (10)  ‘strain angle’ (see eq. 10)
n (A3) /0, coefficient of friction
Mine (1)  coefficient of internal friction
o (25)  state variable for frictional sliding on fault
01,0,,03 (2)  principal stresses
o, @8] normal stress
O (5)  reaction site stress
O 2) o, — P., differential stress
Oy (A1) differential stress for frictional sliding
O pn (A1) differential stress at fault nucleation
Osp (11)  peak (or ultimate) differential stress in constant strain
rate test
O apo (7)  peak differential stress at reference state
(&,,€,,T,); function of P,
T (1) shear stress

loaded to a stress level less than the short-term failure stress,
Time to failure #, is found empirically to be related to stress ei-
ther through exponential or power law forms [Kranz, 1980;
Lockner and Madden, 1991b; Lockner, 1993b]. Consideration
of reaction rate theory [Scholz, 1968a; Lockner, 1993b] leads
to exponential stress dependence

= te b @)

In this paper we will develop a model consistent with the ex-
ponential form.

The sensitivity of strain rate to applied stress level
[Wawersik, 1973; Lockner and Byerlee, 1977; Lockner and
Byerlee, 1980; Lockner, 1993b] is another manifestation of
the processes leading to static fatigue. A feature common to
polycrystalline rocks is that they exhibit a viscoelastic re-
sponse when loaded to stresses above about half the failure
stress. If we consider only brittle deformation, at temperatures
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and pressures below which dislocations and twinning are acti-
vated, then the nonlinear viscous response of a rock is primar-
ily the result of microcrack growth and frictional sliding be-
tween grains [Tapponnier and Brace, 1976; Lockner and Mad-
den, 1991a; Savage et al.,, 1996]. In this case, the concepi of
subcritical crack growth [Atkinson, 1987; Lockner, 1993b]
and the stress sensitivity of microcrack growth rate provide a
mechanism for the observed stress dependence of inelastic
strain rate in rock. The concepts of static fatigue and stress-
sensitive deformation rate will also be incorporated into our
generalized rheological model.

2. Rheological Model: Basic Form

In this section we present the basic form of the rheological
model. Evaluation of empirical coefficients will be added in
section 4, after presenting experimental data used in the em-
pirical fits, We will use the same basic argument presented in
our earlier creep study [Lockner, 1993b]. Namely, over a broad
range of strain rates realizable in the laboratory (roughly 10710
to 107 s1), brittle, inelastic deformation in rock is controlled
by subcritical microcrack growth. Given the ample supporting
evidence from thin section analysis and acoustic emission
(AE) studies, this seems a reasonable starting point [Scholz,
1968a; Peng and Johnson, 1972; Tapponnier and Brace,
1976; Kranz, 1979, 1983; Madden, 1983; Lockner and Mad-
den, 1991a,b; Lockner et al., 1992ab; Lockner, 1993b;
Moore and Lockner, 1995]. Spontaneous high-frequency
acoustic emissions are commonly associated with brittle rock
deformation and indicate that microcracks are advancing fast
enough to radiate acoustic energy. However, a comparison of
total microcrack growth and cumulative AE suggests that <1%
of microcracks generate detected AE [Lockner, 1993a]. Either
detection levels are not sensitive enough to record most AE
events, or -most microcrack growth is aseismic with low
propagation velocity. We have argued for the latter explana-
tion, but observational evidence at this time is not conclu-
sive.

We next assume that inelastic deformation will be repre-
sented by modification of the chemical reaction rate equation

r E*—v*o,, ;
In| —=¢c—-| —Z& 5
n(ro) ‘ ( RT ) ®

where r is reaction rate, ¢ is a constant, and E and v* are ap-
parent activation energy and activation volume, respectively.
Activation volume is more properly associated with pressure,
rather than stress. Indeed, the precise dependence of Gibbs free
energy on stress is still a matter of debate. It is an experimen-
tal fact, however, that crack growth rate is sensitive to crack
tip stress [Atkinson, 1987]. We will treat the validity of (5) as
an assumption of our model, pending resolution of the theo-
retical issues regarding the thermodynamic role of stress.
Equation (5) states that an energetically favored reaction will
progress at a rate determined by the rate of successful attempts
to overcome an energy barrier represented by the activation
energy. In addition, if the reaction sites are stressed, the effec-
tive energy barrier is reduced by an amount v*0,,. An immedi-
ate consequence of (5) is that it implies an exponential rela-
tionship between driving stress and reaction rate (which is re-
lated to inelastic strain rate). This exponential relationship
between stress and deformation rate is an ubiquitous feature of
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brittle deformation found for both intact rock deformation and
for frictional sliding.

If brittle deformation is controlled by a characteristic stress
corrosion reaction at microcrack tips and if this characteristic
reaction is represented by equation (5), then two steps remain.
First, because v* and O, represent conditions at the reaction
sites, these parameters must be related to the remote boundary
stress and displacement conditions applied to the sample. The
overall compressive stresses applied at the boundaries are
converted by local stress concentrators to tensile stresses
which promote microcrack growth. In dense, crystalline rock,
application of hydrostatic stress will tend to close cracks and
to reduce crack tip tensional stresses. In porous sandstones,
the reduced areas of contact where grains touch each other tend
to act as stress concentrators even under hydrostatic loading.
Consequently, grain crushing can occur under simple hydro-
static loading for some sandstones. Since we will be restrict-
ing our analysis to Westerly granite, a dense, crystalline rock,
we expect that hydrostatic loading will tend to stabilize the
sample and that deviatoric stress is necessary to promote mi-
crocrack growth. This effect has been modeled, for example by
Lockner and Madden [1991a,b} and is consistent with the con-
fining pressure dependence of the failure envelope shown in
Figure 2.

The second step in the formulation requires the reaction rate
rto be related to inelastic strain of the sample. In Lockner
[1993b] we related crack tip stress to the remotely applied
stress by using equations developed for idealized cracks em-
bedded in an elastic medium [Ashby and Hallam, 1986]. We
then integrated the effects of individual crack tip reactions to
relate reaction rate to inelastic strain rate. We do not, how-
ever, have adequate theory to describe growth of interacting
cracks which will dominate the final, important breakdown
phase of sample deformation (although this has recently been
investigated, for example, by Okui and Horii [1997]). There-
fore, in the present exercise, we resort to an empirical fit of
experimental data to build our rheological model. We use
Westerly granite as a candidate rock type because it provides
good reproducibility and because it has been studied exten-
sively.

Our rheological model will be based on a modified rate equa-
tion of the form

In(—f—i—j oo~ L i p(B0u)sle) 6)
£ RT

0

where &, is inelastic axial strain rate, &, is a reference strain
rate and, ¢, is a constant to be determined. Functions f(F.,0,)
and g(g;) will be empirically determined from triaxial experi-
ments. These functions represent the dependence of reaction
site stress on the applied boundary stress and inelastic axial
strain. For noninteracting cracks, the influences of remote
stress and strain appeared together in the rate equation as dis-
cussed after equation (3) above. As a working hypothesis, we
adopt the same general form in (6) but do not consider that this
form has been derived in any rigorous way. A more complete
model would require parameters relating the complete tensor
properties of stress and strain but is beyond the scope of the
present analysis. Instead, we will build a rheological model
which includes the fewest possible parameters and which can
describe the available experimental data.
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3. Experimental Procedure

A set of 16 constant strain rate experiments were conducted
on room-dry samples of Westerly granite. Four experiments
each were performed at confining pressures of 50, 100, 150,
and 200 MPa. For each set of four runs, two were deformed at
an axial shortening rate of 1 um/s (&; = 1.57x10° s) and the
two others at 0.01 pum s (1.57x107 s'). In the slow experi-
ments, initial loading to approxirhately one half of peak
stress was carried out at 1 pum s and then reduced to 0.01
um s* for the remainder of the experiment. Samples were 25.4-
mm-diameter right cylinders with length L = 63.5 mm and were
all cored from the same starting block of granite to assure uni-
formity. Extra care was used in preparing identical, high-
quality samples to improve reproducibility. Samples were
jacketed in polyurethane tubing, pressurized and deformed at
room temperature in a triaxial loading frame. Axial load and
displacement were measured outside the pressure vessel. Meas-
urement precision was axial displacement of £0.2 pm (axial
strain of +3x10°); confining pressure of 0.05 MPa; and axial
stress of 0.1 MPa. Pressure, axial stress and displacement
were sampled every second in the fast experiments and every 2
in the slow experiments. Confining pressure was typically
held constant to +0.1 MPa during each experiment. Elastic
stiffness of the loading frame plus sample was determined from
the initial slope of the stress-displacement curves (Figure 3a)
to be k = 345 +6 MPa mm”,

4. Results

Stress-strain plots of four experiments conducted at 200
MPa confining pressure are shown in Figure 3a. Experiments
run at the slower strain rate are ~4% weaker than the fast runs.
This is characteristic of the strain rate dependence of strength
[Lockner, 1995]. The same experiments are shown in Figure
3b with the elastic component of axial strain (&, =0, /(kL))
removed so that the horizontal axis shows only the inelastic
axial strain. The offset in the slow experiments at 700 MPa is
the result of decreasing strain rate from 1 to 0.01 um s™ at this
point. This was done to shorten the total length of ‘these ex-
periments so that the initial loading, which involves almost
no inelastic deformation, is accomplished quickly. The charac-
teristic shapes of the stress-strain curves shown in Figure 3b
will be used to define the empirical functions f(F.,0,) and
g(€;) that are used in the rheological model. Peak strengths
Oy, for the 16 experiments conducted are plotted in Figure 2
along with earlier measurements [Byerlee, 1967, Wawersik,
1973] for Westerly granite. A good fit to the observational
data is given by

O 4o =—8.3+(46,660.4 + 5128.7P.)/2
0< P, £ 700MPa o

and is also plotted in Figure 2. For the remainder of this paper
we will make the distinction between o,, (peak strength at
arbitrary values of temperature and strain rate) and 0y, (peak
strength at reference state values of temperature and strain rate,
as defined in Table 2). Equation (7) is the inverse of the for-
mula

P, =0.00019503,, +0.003240 ,,,, —9.08 (8)
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Figure 3. (a) Stress-total strain plots for four experiments

at P, =200 MPa. Faster experiments are about 4% stronger
than slower experiments. (b) Same experiments plotting
stress versus inelastic strain showing slight weakening prior
to failure. Horizontal offset in slow experiments at 700 MPa
stress is the result of reducing strain rate from fast to slow rate
at this stress (see text). Little inelastic strain occurs below
about 50% peak stress.

and is used in this paper to represent Westerly granite failure
strength. We could have expressed 0, as a polynomial in P,.
However, (7) provides a better fit to the experimental data, es-
pecially in terms of matching both the values and slopes near
the high and low limits.

4,1,  Critical Strain

The notion of a characteristic or critical strain associated
with sample failure has been proposed for brittle fracture
[Griggs, 1940; Scholz, 1968b; Cruden, 1974; Kranz and
Scholz, 1977, Lockner, 1993b]. From a damage mechanics
view, critical strain would be associated with the cumulative
damage needed for loss of structural integrity of the sample.
Madden [1983] argued for a critical microcrack density needed
for sample failure. We have confirmed the observations of the
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accumulation of a critical crack density for fault nucleation in
Westerly granite [Lockner et al., 1992b; Moore and Lockner,
1995]. This critical crack density occurs when crack interac-
tion dominates further crack growth and can be related to the
ratio (crack spacing/crack length) [Lockner et al., 1992b; Re-
ches and Lockner, 1994; Kuksenko et al., 1996]. Further dis-
cussion of critical strain appears in the appendix.

In Figure 3b the natural choice of a characteristic strain is
inelastic strain at peak stress, denoted by &,. This parameter
depends on confining pressure and is listed in Table 3 along
with peak stress values. A linear fit of the form

£, =c;+c, P, €)

gives ¢, = 0.00121 and ¢, = 1.92x10° MPa". The strain data
and a linear fit are plotted as a function of confining pressure
in Figure 4. Our test samples consistently underwent a small
amount of strain weakening, following peak stress, before
fault formation. Thus, strain at peak stress, &,, is found to be
~90% of strain at fault nucleation g,. We will use &, as a ref-
erence strain since it coincides with the reference stress state
Oapo- In (9) we assume that &, depends only on confining
pressure. It may be temperature dependent, but we have no data
to determine this. We do make the assertion that there is no
significant strain rate dependence of &,. This assertion is
consistent with the rather limited strain rate data available to
us (2 orders of magnitude) and warrants further investigation.
Implicit in (9) is an assumption that microcrack growth and
the accompanying structural degradation of the rock is tied to
the macroscopic strain field independent of strain rate.

4.2.

The rheological model will require an empirical fit to the
stress-strain curves shown in Figure 3b. Even a fourth-order
polynomial provides a poor fit to these curves. We seek a
function that (1) matches the general shape of the observed
curves, (2) has a steep slope at the origin, and (3) has a
smooth and monotonically decreasing slope. We adopt a char-
acteristic function of the form

Stress-Strain Relation

on _ sm‘”(—ﬁJ = sin%(p) = ——

O-Apa 0 g(sl )
o<fict (102)

£,

with the definition
84

=—— 10b
¢ 2 g, (10)

and arbitrary constant «. Thus a characteristic stress-strain
curve is used to represent experimental data at all confining

Table 2. Reference State Values

Symbol Definition
a, 0.008 (a evaluated at T=T,)
T, 23°C (296.15°K)
£, strain at peak stress (see equation (9))

£, 1.57x107 s (1 pm s7! axial shortening rate)

O apo peak stress (see equation (7))
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Table 3. Parameters Derived from Experiments

Sample P, &t Cap> £ O ppa » a,
MPa MPa x10°? average x10?

w05-1 50 fast 5432 175 544.5 8.81

w05-2 50 fast 545.9 1.99

w05-3 50 slow 527.6 2.5

w05-4 50 slow 518.3 2.19

wi0-1 © 100 fast 7372 3.14 737.1 7.07

wi0-2 100 fast 7375 3.06

w10-3 100 slow 709.2 3.68

w10-4 100 slow 716.5 3.36

wl5-1 150 fast 899.2 3.59 898.1 6.84

wl5-2 150 fast 897.1 3.96

wl5-3 150 slow 877.1 4.03

wl5-4 150 slow 862.6 393

w20-1 200 fast 1028.4 5.12 1033.0 8.04

w20-2 200 fast 1037.6 5.56

w20-3 200 slow 996.7 5.09

w20-4 200 slow 993.3 472

tPast = 1.57x107 s7*; slow = 1.57x107 51,

pressures with differential stress and inelastic axial strain
normalized by Oy, and &,, respectively. Confining pressure
dependence of these parameters is given by (7) and (9). The 1
um s strain rate experiments at 50, 100, 150, and 200 MPa
confining pressure are plotted in Figure 5a along with a syn-
thetic curve using (10) and o = 0.16. This value of o will be
used throughout this paper.

Equation (10) applies to deformation distributed throughout
the sample; that is deformation leading up to strain localiza-
tion and fault nucleation. In the appendix, we present data
from 38.1-mm-diameter samples that suggest fracture nuclea-
tion initiates at a characteristic strain g, =1.1¢,. Once a frac-
ture nucleates, the sample undergoes a rapid loss of strength
which stabilizes at the frictional sliding strength. A represen-
tative strength curve is shown in Figure 5b. A discussion of
the postnucleation phase is deferred to the appendix since the
principal deformation characteristics dealt with in this paper
are related to the prenucleation region represented by (10).
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Figure 4. Plot of critical inelastic strain versus confining
pressure. Linear fit is given by equation (9).

4.3. Strain Rate Dependence of Stress

We have shown (Figure 3b) that a two-decade decrease in
strain rate results in an approximate four percent decrease in
peak strength. To show this in more detail, we have subtracted
the empirical strength curve (equation (7)) from peak strength
data for 16 constant strain rate experiments. The residuals,
plotted in Figure 6a, show a systematic weakening of samples
deformed at the slow strain rate. We next define the rate sensi-
tivity of peak stress as ‘

a=L_9_6i‘ an

O-Ap alnéi

The form of (11) is consistent with experimental observations
for both deformation of intact rock [Lockner, 1993b] and de-
formation on preexisting fractures [Dieterich, 1981; Blanpied
et al., 1995; Blanpied et al., 1998]. (For slip on fractures, a
somewhat different definition is used: ag =(1/0,)(dt/dInV)
with normal stress held constant.) In laboratory simulated
fault studies, a,, is only weakly dependent on normal stress
[Kilgore et al., 1993]. We find a similar result for intact rock
(Figure 6b) where a is plotted as a function of confining pres-
sure. Results are also listed in Table 3. Numerical inversions
of laboratory data [Blanpied et al., 1998] yield ag = 0.006
40.003 for dry, room temperature granite friction experi-
ments, a range of values that is in close agreement with the in-
tact granite values (¢ = 0.008 +0.001) reported here. (As
shown in the appendix, a small scaling factor is required to
convert from values of a evaluated parallel to the o, axis and
Gg» Which is evaluated on an inclined fault plane.) The mi-
cromechanical deformation mechanisms that control the re-
sponse of a fault surface to a sudden change in slip rate are
likely to be subcritical crack growth and contact interlocking.
Since these same mechanisms are occurring during deforma-
tion of intact samples [Savage et al., 1996], it is not surpris-
ing that the deformation rate sensitivity for intact rock and
slip on fault surfaces should be similar.

While we have determined the value of a at room tempera-
ture, we have not conducted experiments to determine how a
varies with temperature. Determinations of g, have been re-
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Figure 5. (a) Normalized stress versus strain (normalized by
critical strain) for fast experiments at confining pressures of
50, 100, 150, and 200 MPa. Characteristic curve (equation
(10)) is shown as dashed line and is used to represent stress-
strain relation at all confining pressures. (b) Generalized
stress/strain curve showing three stages of deformation. Dis-
tributed deformation with strain dependence given by equation
(17) is followed by strain localization and fracture formation
characterized by rapid strength loss (see the appendix). Final
stage is frictional sliding on fully developed fault.

ported for dry granite gouge-filled fractures to 845°C [Lockner
et al., 1986] and wet granite gouge to 600° [Blanpied et al.,
1998]. Below 250°C, temperature dependence of a,, is small
and even the sign is not certain. Alternatively, we have evalu-
ated subcritical crack growth data for tensile crack growth in
Westerly granite [Atkinson and Meredith, 1987, Figure 4.9].
In this case, we find that the stress intensity factor tends to de-
crease with temperature: dK;/oT = —(7£2)x10-5 MPam'” °K".
If this mechanism is responsible for the temperature depend-
ence of @, we estimate da/dT = ~3x1075 °K”'. We will assume a
functional form
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a=a,+m(T-T,) (12)

where T, is a reference temperature, although alternative forms
are certainly possible.

5. Generalized Rheological Model

We now have all the necessary information to construct our
generalized rheological model. We begin with (6), adopting
the following functional forms for the dependence of reaction
site stress on remotely applied stress and strain:

A(Boy) =22 (13)
aGApa
g(&;)=sin"*(¢p) (14)

where confining pressure dependence is given by (7) and (9)
and ¢ is defined in (10b). Substitution into (6) gives

(15)

We have set an upper stiain limit for applicability of (15) of
& =1.1g, which, as we discuss in the appendix, represents the
critical strain at which fracture nucleation occurs. The constant
c, can be determined by evaluating (15) at the reference state
listed in Table 2. We find that ¢, =(E*/RT,)—1/a,. The re-
sulting rheological model then becomes

or, upon rearranging terms

O, =crAp(,asin"‘(go)LL+}ie (%—%]Hn[j—’ﬂ . 3an

Q

6. Discussion

When evaluated at room temperature (T =T, a = a,), equa-
tion (17) reduces to

Op = Oppo SIN® ((0)|:1 +a, ln(ijj|
&

As required, we have recovered the simple functional form (10)
with a log strain rate sensitivity of stress given by a,. The full
strain rate sensitivity is

(18)

o,

(19
Blnéi ( )

= a0 a,, Sin%(()
so that at peak stress (¢ = 7/2) we recover equation (11).

6.1. Temperature Dependence
Temperature dependence of stress is determined from (17) as

1 do, 1 0, oa

owe A1) “ 0 3(}7)

£ ina(p)+ (20)
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Figure 6. (a) Difference between observed peak strength o,, and least squares fit to strength under ‘standard

state’ conditions (equation (7)) for fast and slow experiments.

Slow experiments are systematically weaker due

to strain rate sensitivity of stress as expressed by parameter a. (b) Strain rate sensitivity of stress plotted as a
function of confining pressure showing little pressure sensitivity.

The first term on the right-hand side of equation (20) relates
the Arhenius type interdependency of stress, temperature, and
activation energy. The second term describes the effect of
temperature-dependent variations in a on stress. If we assume a
dependence of a on temperature as in equation (12), we find

that 9a/d(1/T) = -mT" and (20) becomes
1 doy _ a—-sm (p)-——2-T2 20
GAp() (A“) O-Apn

If |m| < «2E*/(RT?), the first term on the right-hand side of (21)
dominates and a plot of normalized peak stress versus 1/T
should result in a slope of @ E/R. Proper experimental data for
testing this relationship are not available. Temperature-
stepping experiments carried out at constant strain rate would
provide such a test. However, we have not conducted these
measurements. For now, we show peak strength data from
nominally dry deformation experiments of Westerly granite in
Figure 7. Changes in microstructure due to thermally induced
microcracks, as well as pressure sensitivity of crack growth
can affect these peak strength data in a manner unaccounted for
in the present model. Above about 300°C, dislocation creep
mechanisms become increasingly important in lowering

strength and the present analysis will not be applicable. Be-
low 300°C, however, we find an average slope of 74 142°K,
which implies an apparent activation energy of E = 77 £43
kJ mol. Values reported for single crystal quartz [Scholz,
1972] and sandstone [Rutter and Mainprice, 1978] range from
83 to 100 kJ mol. Substituting this activation energy into
the above inequality requires, at 100°C, Iml < 6x107 /°K. Our
rough estimate of m from mode I subcritical crack data, in the
discussion preceding equation (12), is only marginally smaller
than this restriction. Including m = -3x107 °K™ in the above
calculation does not significantly change the estimate of E’.
Still, the currently available experimental data are of insuffi-
cient accuracy to determine either £ or m with confidence.

6.2. Numerical Modeling

In sections 6.3 through 6.5 we will compare the response
predicted by the rheological model to a variety of constant
stress and constant strain rate experiments. To facilitate this
comparison, we have developed a simple forward fime step-
ping numerical model based on (17) and incorporating elastic
stiffness of the loading frame. Because of the wide range of
possible strain rates (spanning over 10 orders of magnitude),
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Figure 7. Relative strength of dry Westerly granite plotted as a function of inverse temperature. Data from
Tullis and Yund [1977] and Wong [1982]. Slope of temperature sensitivity for temperature below 300°C sug-
gests apparent activation energy of 77 kJ mol™. Above this temperature, dislocation mechanisms are acti-
vated, and samples have moved into a different deformation regime.

the numerical model computes a variable time step based on
predetermined maximum allowable changes in stress and
strain. For convenience, we will restrict ourselves to modeling
deformation experiments at room temperature.

Axial deformation u is measured at a fixed position outside
the pressure vessel during each experiment. We express axial
deformation in terms of an equivalent total strain &, =u/L
where L is sample length. Total strain is partitioned into two
parts: elastic strain €, and inelastic strain g;, such that

Er=¢,t¢&; . (22)

Elastic strain is related to axial stress through the combined
stiffness of the sample and loading frame

o, =kLe, (23)

where 17k = 1/kgppe + 1k Initial slopes of stress-strain
curves (Figure 3a) give k = 345 +6 MPa mm™. Equation (18)
can be rearranged to provide an explicit expression for inelas-
tic strain rate in terms of inelastic strain and an applied stress
boundary condition

(24a)

IA_gin-a (go)—l}

. . 1
Ing =lng, +—
GApu

a()

Alternatively, stress can be eliminated by combining (22)
and (23) to give inelastic strain rate as a function of inelastic
strain and a total strain boundary condition

. . kL{ey — &
Ing =Iné, +L{Msin-a((p) - 1} (24b)
a

o O-Apo

Finally, we note that for a fixed displacement boundary
condition, the sample-loading frame system will become un-
stable (accelerating inelastic strain) when the unloading slope
of the sample (dG,/0e) exceeds the elastic unloading of the
system (-kL). As discussed in the appendix, rapid weakening is
associated with fault nucleation and growth, beginning at
g, =1.1g,. Since we do not consider inertial effects in our
computations, we stop deformation calculations when strain
rate exceeds approximately 1 s (63.5 mm s™).

6.3. Constant Strain Rate Simulations

The first series of simulations are at constant strain rate and
constant confining pressure. Figure 8a plots stress versus to-
tal strain for three experiments at a strain rate of 1.57x107 s
along with the corresponding simulations.. Owing to the rela-
tively small amount of net inelastic shortening, these plots
are generally dominated by elastic loading. Figure 8b shows
the same experiments with only the inelastic strain compo-
nent plotted. One well-documented feature of Figure 8b is that
there is little appreciable inelastic strain below ~50% of peak
strength. In general, the samples undergo a small amount of
stable unloading following peak stress. This phase progresses
into dynamic unloading of the system and violent stress drop
represented by the straight-line segments of the curves after
inelastic strains of 0.003 to 0.005. The slope of this dynamic
unloading is controlled by the stiffness of the sample-loading
frame system. A second series of experiments is plotted in
Figure 9. In this case, axial shortening began at 1.57x107 s™
and then was reduced at about half of the peak stress to
1.57x107 s™'. The reduction in strain rate results in a horizon-
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Figure 8. (a) Fast strain rate experiments (solid lines) at

100, 150, and 200 MPa confining pressure. Numerical simula-
tions are shown as dashed lines. (b) Same experiments and
simulations plotting stress versus inelastic strain. Postfailure
slopes are controlled by machine stiffness. Peak stress, criti-
cal strain, and overall shape of stress-strain response are well-
represented by rheological model.

tal jog in the stress-strain curve at about 300 and 700 MPa
stress. While the simulations also contain this offset, they
appear to underestimate the magnitude of the inelastic strain
step. In other regards, the simulations do a good job of repro-
ducing the observed strain behavior.

6.4. Constant Stress and Time to Failure

The next simulations (Figure 10) are three creep or constant
stress experiments at 200 MPa confining pressure. In this
case, simulations are ended when creep rate increases to 0.1 s™.
Also plotted for reference are constant strain rate simulations
at 10 and 10"® s, The fast strain rate experiment provides a
reference failure envelope for rapid deformation; failure oc-
curred after 5.5 min. The slow strain rate is intended to enclose
a region in stress-strain space in which the rock is essentially
stable. For example, if a sample can sustain inelastic strain in

excess of 0.001 without failing, a strain rate of 10™® s repre-
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sents a lifetime of over 30 Myr. In each of the three creep ex-
periments shown in Figure 10a, failure is delayed as inelastic
strain (damage) accumulates in the sample. Finally, when
enough damage has occurred to lead to fault nucleation, the
stress-strain curves intersect the descending failure envelope
and the sample fails. This process has been discussed by Waw-
ersik and Fairhurst [1970] and Lockner et al. [1992b]. The
same simulations are shown in Figure 10b with the elastic
strain removed. Finally, strain is plotted versus time in Figure
10c for one of the simulations, showing the three characteris-
tic creep phases: (1) primary or transient creep characterized
by ¢ proportional to 1/t; (2) secondary creep with nearly
constant strain rate; and (3) accelerating or tertiary creep cul-
minating in failure [Lockner and Byerlee, 1980; Lockner and
Madden, 1991b; Lockner, 1993b]. The 1/t primary creep re-
sponse is built into the rheological model since constant
strain rate curves are spaced by Ilng;. Secondary creep occurs in
the transition region between decaying primary creep as non-
interacting cracks strain harden and accelerating tertiary creep
characterized by the gradual increase in crack interaction and
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Figure 9. (a) Slow strain rate experiments under conditions
similar to, but weaker than, those of Figure 8. (b) Same ex-
periments and simulations as in Figure 9a with stress plotted
versus inelastic strain. Horizontal jog at low strain is result of
a 2 decade drop in strain rate.
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Figure 10. (a) Constant stress (creep) simulations at 800,

900, and 1000 MPa differential stress and 200 MPa confining
pressure. Constant strain rate simulations at 10 and 107* s
are plotted for reference. During creep experiments, mi-
crocracks gradually grow by subcritical crack growth
[Lockner, 1993b] until fault nucleation occurs. (b) Same simu-
lations as in Figure 10a with stress plotted versus inelastic
strain. Area under each curve represents irreversible work ex-
pended during creep. (c) Time plot of strain for 900 MPa creep
simulation. Simulation exhibits three classic stages of creep
[Lockner and Byerlee, 1980; Lockner and Madden, 1991b;
Lockner, 1993b].

cooperative deformation. In this sense, secondary creep does
not represent any unique process but rather a region in which
two processes are nearly in balance. Tertiary creep represents
the region of increasing crack interaction which culminates in
fracture nucleation and failure.

Another set of three simulations were computed at constant
total strain boundary conditions (Figure 11). By fixing total
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strain, stress decreases monotonically as stored elastic energy
is consumed by microcrack growth in the sample. As in the
case of constant stress runs, if the initial stress level is low
enough, the strain rate will drop to very low levels and the
sample is stable over even geologic timescales. Of course, ex-
trapolation from laboratory strain rates (greater than about
10" 1 to geologic timescales is uncertain since alternate de-
formation mechanisms such as pressure solution may become
significant. Figure 1lc plots the inelastic strain history for
the simulation run at a total strain of 0.048. Even though
stress is continuously decreasing during this simulation, the
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Figure 11. (a) Three simulations at constant total strain in
which stored elastic energy is used to grow microcracks. (b)
Stress versus inelastic strain showing gradual unloading at a
rate controlled by machine plus sample stiffness. Simulation
at 800 MPa intersects stable region of stress-strain space and
never progresses to failure. (¢) Inelastic strain history for
simulation at 0.048 total strain. Similar to the creep simula-
tions, this run shows three creep phases culminating in fail-
ure.
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Figure 12.

Time to failure plotted versus stress for Barre granite at four confining pressures (data from

Kranz [1980]). Rate sensitivity a is selected to match experimental data and varies systematically with confin-
ing pressure. Note that exponential stress dependence is properly predicted by the rheological model.

strain history shows the same three creep phases observed in
the constant stress experiments. This is not surprising when
stress trajectories in Figures 10b and 11b are compared. While
stress does decrease with strain in the simulations in Figure
11b, the decrease is relatively minor and not very different
from the constant stress trajectories from the creep experi-
ments. The main effect is to gradually drop to lower strain
rates and therefore extend the timescale over which the defor-
mation occurs.

Creep simulations like the ones shown in Figure 10 can be
used to compute time to failure () response for granite loaded
to some fraction of its short term failure strength. Good ex-
perimental data exist for Barre granite [Kranz, 1980] which is
coarser grained and weaker than Westerly. Kranz’s [1980] re-
sults are reproduced in Figure 12 along with simulations using
his peak strength values (shown in Figure 12) and critical
strain values. Average strain rate is just g,/t;. Then, equation
(11) suggests that the slope of the logt, versus o, plot should
be approximately —1/(2.303a,0,,,). We have adjusted g, to
match the observed trends in the Kranz data. Values of a, that
fit the experimental data are shown in Figure 12. For Westerly
granite, @, was found to be nearly independent of confining
pressure (Figure 6b). By contrast, the Barre granite time to
failure data suggest that a, decreases with increasing confining
pressure. However, given the uncertainty in the slope determi-
nations, this has not been demonstrated conclusively. For ex-
ample, the 200 MPa determination of g, is sensitive to a sin-
gle observation at £, = 10% 5. Moisture content in the samples
is known to have an important influence on subcritical crack
growth rates in tension [Atkinson, 1987] and needs to be con-
trolled more carefully. It is probably better to carry out these
experiments under fully saturated conditions to minimize the
influence of variations in partial water saturation. What is
clear from Figure 12 is that the exponential dependence of
time to failure on applied stress is successfully reproduced by
the rheological model as developed here. This relationship
was pointed out by Lockner [1993b], who related the slope
(At,/Ac,) to the apparent activation volume associated with
microcrack growth. This quantity is related to a,0,,, in the
present formulation.

6.5. Strain Rate Stepping Experiment

As a final test of the rheological model, a deformation ex-
periment was conducted at 50 MPa confining pressure and
room temperature on a larger (76.2 mm diameter by 190.5 mm
length) sample. In this case, axial stress was measured with an
internal load cell so that variations in seal friction on the
loading piston do not affect the stress measurements. A rock
plus loading frame stiffness of k = 129 MPa mm” was deter-
mined from the stress-displacement curve. The sample was
loaded by a sequence of constant strain rate steps, allowing
stress to vary in response as shown in Figure 13a. Also plot-
ted is the stress response in a numerical simulation which used
the same strain rate boundary condition. Peak differential
stress was 584 MPa which is ~7% above the peak value of the
smaller samples used to determine model parameters in this
paper. It is likely that this sample was cored from a different
granite block than the 16 small samples reported on above.
We have observed similar variations in strength of Westerly
granite when blocks from different parts of the quarry were
compared. Consequently, we used a larger value for the peak
strength in modeling this experiment. Results from a simula-
tion using Oy, = 595 MPa are shown as dashed lines in Figure
13a. Inelastic strain at failure is sensitive to the value used for
characteristic peak strain (g&,). The value used in this simula-
tion (0.00245) is within the range of values determined from
small sample calibration runs (Table 3). Other coefficients
used in the simulation are the values determined from the 16
small sample calibration runs. During the real experiment,
stress rose in steps in response to the varying strain rate his-
tory. Inelastic strain rate, computed by subtracting elastic
strain rate from total strain rate, is also seen to respond to the
rising stress level. While 0,,, was chosen to match the peak
stress in the experiment, inelastic strain at failure could also
be matched by choosing &, to be within the range observed in
small samples experiments. Thus the small samples can be
used to predict response of samples 3 times larger and tested in
a loading frame having significantly different loading charac-
teristics. .

Detailed stress response to one of the strain rate sequences
involving three decade steps in strain rate is shown in Figure
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Figure 13. Strain rate stepping experiment conducted on 76.2 mm diameter dry Westerly granite sample at
50 MPa confining pressure. (a) Observed stress and inelastic strain response (solid lines) and numerical simu-
lation (dashed lines). (b) Applied strain rate history. (c¢) Expanded view of one strain rate stepping sequence
showing elastic response to two fastest strain rate steps but creep response to slower strain rate steps. Simula-
tion captures all the significant features of the strain rate stepping sequence.

13c. The two fastest strain rate steps resulted in essentially
elastic response of the sample. The next slower step at 34,800 s
resulted in a shallow bay in stress followed by a gradual stress
increase. The final slowest strain rate step at 35,800 s resulted
in a slow but steady weakening of the sample. All of these fea-
tures are accurately reproduced in the numerical simulation
shown as the dashed line in Figure 13c.

6.6. Comparison to Frictional Sliding

We have noted the general form of the intact rock rheologi-
cal model (18) bears a close resemblance to rate- and state-
dependent constitutive laws developed to describe frictional
sliding of Coulomb materials [Dieterich, 1981; Kilgore et al.,
1993; Blanpied et al., 1998]

0
T=T,+ africo-n lﬂ(%] + bﬂicO',, ID(Q—J

[¢] [¢]

(25)

where 0 is a state variable describing evolution of the fault ma-
terial. We can evaluate intact rock strength near peak stress (@
= 71/2), taking a series expansion of the inelastic strain de-
pendence ( g{¢;)) and discarding terms of order (g; -&,)° and
higher. Equation (18) then reduces to

é.
Op = GAp() + 50 Apo ln(g—’) . (26)

[}

A comparison of (25) and (26) shows the two constitutive laws
have the same form with the exception that there is no evolu-
tion term in the intact rock relation. The evolution term is in-
cluded in the frictional law to account for growth and decay of
contacts resulting from finite slip on the fracture surface.
Therefore it is not surprising that intact rock deformation,
which results from the growth and collapse of distributed mi-
crocracks involving little net strain, should not require such a
term. In fact, we anticipate that the functional form of (25) can
be recovered from (26) by integrating over a population of
contacts that are all in different stages of their
growth/collapse sequences.

The a terms in (25) and (26) provide an immediate change in
stress due to a change in strain rate. This is sometimes referred
to as the instantaneous response. Strain would be concentrated
in a narrow fault zone, so that relative displacements and
movement of grains would be much greater than in distributed
buik deformation. Even so, this effect should only be applica-
ble to the state variable b term since, at least in a mathemati-
cal sense, the instantaneous response does not require finite
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displacement. The actual strain required for the ‘instantaneous’
response to occur is likely to be of the order of AT/G, where G
is the shear modulus of the contact resisting deformation.

7. Conclusions

In this paper we have developed an empirical constitutive
law relating stress, strain and strain rate for deformation of
Westerly granite based on an Arrhenius type reaction rate equa-
tion. The model assumes that inelastic deformation within the
rock is the result of microcrack growth which is thermally ac-
tivated and which can be related to boundary stresses and
strains through characteristic functions. Consequently, inelas-
tic strain rate can be related to applied stress, strain, and tem-
perature according to equation (16). At room temperature, this
relation simplifies to equation (18). This equation applies to
distributed deformation prior to fault nucleation. Fault forma-
tion and frictional sliding stages are considered in the appen-
dix. Application of the model to other dense crystalline rock
types should be straightforward, requiring a standardized set of
deformation experiments to determining the parameters out-
lined below. Extension of the model to other rock types may
also be successful but will require proper verification. We ex-
pect that there will be some confining pressure range for po-
rous sandstone over which this model will work successfully.
For example, a representative stress-strain plot for Berea
sandstone (18% porosity) is discussed in the appendix (Figure
14b). The basic shape of this deformation curve is remarkably
similar to the shape of the granite tests used to develop the
model.

Model parameters needed to evaluate (18) are as follows:

1. Three coefficients are needed to describe the failure enve-
lope for Westerly granite; tensile strength, uniaxial compres-
sive strength, and a third coefficient related to the increase in
strength with confining pressure. In this way, we are able to
represent the failure surface for Westerly granite over a confin-
ing pressure range from zero to 700 MPa. When less accuracy
is required, a linearized Coulomb failure envelope would be
adequate, requiring cohesive strength and coefficient of inter-
nal friction.

2. The model requires knowledge of the inelastic strain at
peak stress, a quantity which is found to vary with confining
pressure. A linear fit relating &, to P, requires two empirical
coefficients.

3. A single shape factor o is used to relate stress to strain at
constant strain rate, independent of confining pressure and
strain rate.

4.The strain rate sensitivity of peak stress is an additional
parameter needed for the model. For Westerly granite, this
quantity a is nearly independent of confining pressure over the
investigated range (50 < P, < 200 MPa and 107 s™ < ¢; <107
s).

Thus at Toom temperature seven parameters are needed for
the model. An additional parameter (either Young’s modulus or
machine stiffness) is needed to include elastic deformation.
This allows us to predict the general stress-sirain-strain rate
behavior of the rock from initial loading to failure (at ap-
proximately &, =1.1¢,). While we do not have full verifica-
tion of the range of strain rate response, time to failure tests
suggest that the model i$ applicable for strain rates from ap-
proximately 107 s™ to 107° 5™, This covers the range of strain
rate normally encountered in quasi-static laboratory deforma-
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tion experiments. Extrapolation to lower strain rates may be
complicated by the activation of additional deformation
mechanisms. Some laboratory data [Lockner, 1995, Figure 7]
show consistent response to strain rates as high as 10°.

To extend the model to temperatures above room tempera-
ture, additional parameters are needed. These include apparent
activation energy E ~ 90 kJ mol’. In addition, the temperature
dependence of @ must be determined, requiring one additional
parameter. It should be noted that the temperature dependence
predicted by the model has not been verified. In fact, effects
such as microstructural changes due to heating have not been
considered in the model and may have an important effect on
deformation characteristics. Also, once dislocation processes
become important, new terms, reflecting these processes,
would have to be added to the model. This is an area requiring
future work.

The constitutive model developed in this paper relates a
single (axial) component of principal strain and strain rate to
principal stresses (o, P.) and temperature. A full treatment in-
volving complete tensor quantities, even for a rock with axi-
ally symmetric mechanical properties, is beyond the scope of
the present study, although, in principle, there are no techni-
cal limitations to carrying out such a study. Even so, the
rheological model developed here provides a relatively simple
tool for relating important thermomechanical quantities
needed to characterize brittle deformation of rock.

Appendix

Al. Breakdown and Frictional Sliding Regions

Equation (17) expresses the stress-strain-strain rate relation
for deformation of Westerly granite from initial loading to
fault nucleation. Because strain is uniformly distributed in this
deformation regime, applied boundary displacements can be
easily related to the strain field within the sample. With fault
formation and the accompanying drop in shear strength, strain
is rapidly concentrated into the developing fault plane so that
the strain field becomes highly heterogeneous. This process
of fault formation and growth will ultimately lead to a regime
of frictional sliding on a distinct fault plane. While we have
not studied development of the breakdown region in detail, a
complete description of deformation from initial loading to
frictional sliding must deal with this transitional region. We
present here data from a unique set of quasi-static deformation
experiments on Westerly granite which have been discussed
previously in the context of acoustic emission and microcrack
growth [Lockner et al., 1992a]. While these experiments were
carried out at nominally constant acoustic emission rate, and
not at constant strain rate, they can provide insight into the
shape of the postnucleation failure envelope. Because defor-
mation is heterogeneous in this transition phase, the deforma-
tion field is related to average axial shortening in a complex
marnner [Lockner et al., 1991]. One basic result is shown in
Figure 14a in which normalized stress-inelastic strain curves
are plotted for a set of three granite experiments at 50 MPa
confining pressure. Notice that the onset of fault nucleation
occurs abruptly at ~10% past peak stress (&;/&,= 1.1). Fur-
thermore, the slope of the stress-strain curve following fault
nucleation is highly repeatable and the weakening curve is
linear over the observed range. These features cannot be seen
in the smaller 25.4-mm-diameter sample experiments (i.e.,
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Figure 14. (a) Normalized stress/inelastic strain curves for
three quasi-static granite experiments at 50 MPa confining
pressure. Constant acoustic emission rate rather than constant
strain rate was used to control axial load and to prevent dy-
namic failure [see Lockner et al., 1992]. In all cases, fracture
nucleation was accompanied by an abrupt change in slope and
rapid strength loss. Complete failure curve could not be fol-
lowed because fracture propagated into end of sample and in-
tersected steel loading piston. Dashed line indicates expected
weakening to frictional sliding strength. (b) Complete nor-
malized failure curve for Berea sandstone sample showing ap-
proximate linear weakening to frictional sliding strength.

Figures 5a, 8b, and 9b) because once the fault nucleates, the
sample becomes unstable and the slope of the unloading curve
is controlled by machine stiffness. In the quasi-static acoustic
emission experiments, the loading piston is actually backed
off automatically in response to the change in acoustic emis-
sion rate before the sample becomes unstable.

In the granite experiments in which the fault was allowed to
propagate, the failure plane formed at a steep angle to the
sample axis so that the fault intersected the steel end cap be-
fore propagating completely across the sample. In these
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cases, the stress-strain curves flattened out before stress
dropped to the frictional sliding strength. However, sandstone
experiments from the same study formed faults at shallow an-
gles and developed throughgoing faults without infersecting
the steel end caps. An example of a complete sandstone stress-
strain curve, from initial loading to frictional sliding, is
shown in Figure 14b. In this case, the displacement weaken-
ing phase related to fault formation begins approximately
20% past peak stress. This breakdown phase is nearly linear
until the frictional sliding stress is reached.

On the basis of these results we construct a representative
failure curve for Westerly granite in which strength drops line-
arly with axial shortening from a characteristic strain at nu-
cleation g, = 1.1¢&, to a frictional sliding strength at a char-
acteristic strain £; = 1.4 &,. The failure curve is represented
by dashed lines in Figure 14a and in Figures 10 and 11 assum-
ing a coefficient of friction of 0.75 and a fault angle B = 27°. A
complete deformation function for room temperature can now
be defined as follows:

Op = O-Ap() Slna(q))[l +a, ln(i):|
£

0

0<ficyg (Ala)
80
£—-€ F
OpA=0py—| —2 [0y, -0 1+a,Inf -
[ " (Ef_gn ( & Af) VA
8.
Li1<fi<14 (Al
80
g, )
Op =0prl 1+a,In| =% |+b, In| —
14< (Alc)
£0

where €, = 1.1&,; €5 =1.4€,; Op, =0np,sin®(1.17/2); and
O is determined from frictional properties. For example, for
P, =200 MPa, B=30°and u = 0.75, equation (2) requires Ous
= 611 MPa. Here we have used the same a value for intact rock
and frictional sliding. Where data exist, the frictional value a,,
can be modified appropriately. Following the developments of
rate- and state-dependent friction laws, we have included in the
friction law (Alc) a “state” variable 6 which is proposed to
evolve, for example, according to
d6 £,0

A B o

> ¥ (A2)

where £*is a characteristic strain equivalent to D, in standard
rate- and state-dependent friction formulations. A proper dis-
cussion of rate- and state-dependent friction theory is beyond
the scope of this paper. Interested readers are referred to the
following references Dieterich [1978, 19791, Ruina [1980,
199831, Rice and Gu [1983], Tullis and Weeks [19851, Blan-
pied et al. [1995], Perin et al. [1995], Beeler et al. [1996], and
Blanpied et al. [1998].

A2, Comparison of a and a,

We have defined our deformation model in terms of axially
oriented stresses and strains while friction analysis typically



5122

uses a reference system based on a fault surface inclined at an
angle B to the sample axis. Combining equations (2) and
(Ala), shear and normal stress in the distributed deformation
field are given by

T= %o‘Apo sin(23)sin® (g0)|:1 +a, ln(j—’ﬂ (A3a)

[+]

o]

On =Pt =00 (1~ cos(2B))sine (gp){l ta, In(:—’ﬂ (A3b)

The algebraic expressions relating a, (defined in the axial
reference frame) and q,,, (defined in fault reference frame) are
cumbersome and not particularly revealing. For simplicity, we
will provide two specific examples that demonstrate the corre-
spondence between a, and a,,. In the triaxial test geometry,
both shear and normal stresses, resolved on a plane inclined at
an angle to the sample axis, vary in an experiment run at con-
stant confining pressure. Thus maintaining constant normal
stress requires an adjustment in confining pressure. In the first
example we evaluate stresses on a plane inclined at 8 = 30°, P,
=200 MPa, a, = 0.008 and ¢ = &, in an intact sample using
the reference state values listed in Table 2. In this case, shear
and normal stresses are 444.8 and 456.8 MPa, respectively.
So that the coefficient of friction is p = 7/0, = 0.9737. Increas-
ing the strain rate by a factor of ¢ while keeping normal stress
constant requires a decrease in confining pressure to 198.7
MPa (equation (A3b)). The resulting shear stress is 447.0, or 1
= 0.9786. Thus, for a, = 0.008, we have ag = (A,uﬂ;w/A In s‘,-):
0.005; a difference of ~38%.

As a second example, we evaluate stresses in the frictional
sliding regime (equation (Alc)), assuming a reference state co-
efficient of friction [, = 0.75. P, = 200 MPa requires shear and
normal stresses of 264.6 and 352.7 MPa, respectively. In-
creasing strain rate by a factor of e and maintaining constant
normal stress requires a decrease in confining pressure to
199.3. The resulting shear stress is 265.7, or L= 0.7534. In
this case, for a, = 0.008, we have a, =0.0034. Laboratory de-
terminations of ag in artificial faults containing dry granite
gouge range from about 0.003 to 0.009 [Blanpied et al.,
1998].
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