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Effects of Variable Normal Stress on Rock Friction' 

Observations and Constitutive Equations 

M. F. LINKER I AND J. H. DIETERICH 

U.S. Geological Survey, Menlo Park, California 

We investigate the effects of variable normal stress on frictional resistance by performing 
quasi-static sliding experiments with 5 x 5 cm blocks of Westerly granite in a double-direct shear 
apparatus under servo-control. The observed response to a change in normal stress mimics that which 
occurs in response to a change in slip velocity. In particular, a sudden change in normal stress results 
in a sudden change followed by a transient change in the resistance to sliding. We interpret these 
changes within the previously established constitutive framework in which frictional resistance is 
determined by the current slip speed V, the current normal stress, and the state of the sliding surface 
(Dieterich, 1979a, 1981; Ruina, 1980, 1983). Earlier work demonstrated that the state of the sliding 
surface depends on prior slip speed. Our observations indicate that the state of the sliding surface also 
depends on prior normal stress. In our model the functional dependence of state on normal stress is 
expressed in terms of the same state variable, 0, used previously to represent slip rate history effects. 
We assume that the steady state value of 0 is independent of normal stress and that 0 ss = Dc/V, where 
D c is a characteristic slip distance. We interpret the variable 0 as a measure of effective contact time. 
At constant slip speed and from an initial steady state, a sudden change in normal stress results in a 
sudden change in 0 followed by a gradual change in 0 back toward the initial 0 ss, as sliding proceeds. 
The magnitude of the sudden change in 0 is determined by a newly identified parameter that we call 
a. Earlier workers have established that stability is influenced by stiffness, drSS/dV, Dc, and slip rate 
history (Rice and Ruina, 1983). We conclude that stability will also be influenced by normal stress 
history and by a. 

1. INTRODUCTION 

Friction laws incorporating slip rate and surface state 
dependence have been proposed [Dieterich, 1979a, 1981; 
Ruina, 1983] to simulate the observed frictional behavior of 
rock in laboratory experiments [Dieterich, 1979a, 1981; 
Ruina, 1980, 1983; Okubo and Dieterich, 1984, 1986; Weeks 
and Tullis, 1985; Tullis and Weeks, 1986; Chester, 1988; 
Biegel et al., 1989; Marone et al., 1990; Wong et al., 1991; 
Blanpied et al., in press]. The utility of these laws is 
demonstrated by their incorporation in numerous attempts 
to simulate fault slip in the Earth. These studies include 
stability analyses [Ruina, 1980; Rice and Ruina, 1983; Gu et 
al., 1984; Blanpied and Tullis, 1986; Horowitz, 1988], the 
quasi-static nucleation and growth of unstable fault slip 
[Dieterich, 1979b, 1986], the analysis of dynamic motion 
[Okubo and Dieterich, 1986; Rice and Tse, 1986; Okubo, 
1989], the triggering of large crustal earthquakes and after- 
shocks [Rice and Gu, 1983; Dieterich, 1987, 1988], the 
modeling of creep events [Marone et al., 1991], and finally, 
efforts to simulate the entire cycle of crustal earthquakes 
[Tse and Rice, 1986; Stuart, 1988; Horowitz and Ruina, 
1989; G. M. Mavko, unpublished manuscript, 1984]. 

For a fault to exhibit unstable slip, i.e., seismicity, the 
sliding resistance must decrease with displacement. Perhaps 
the simplest representation of this behavior is the slip- 
weakening model. Furthermore, for a fault to exhibit re- 
peated unstable slip, some healing process must also take 
place. The rate- and state-dependent friction laws not only 
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yield slip weakening, whenever the stress is greater than 
some reference value, but also result in time-dependent 
healing of the fault, whenever the shear stress is less than 
that reference value. The stress at the transition from healing 
to weakening corresponds to steady state sliding. 

To date, the major focus in the laboratory has been to 
describe the variation in the resistance to sliding under 
conditions of variable slip rate at constant normal stress. 
Under these conditions, according to the rate- and state- 
dependent model, the resistance to sliding can be specified if 
the current slip speed and prior slip speed history are known. 
However, both in the Earth and in laboratory experiments, 
the assumption of constant normal stress is often not appro- 
priate. 

Only under very unusual and idealized situations does a 
change in the applied stress, resolved onto a sliding surface, 
simplify to a change in shear traction alone. For example, 
Mavko et al. [1985] observed that the May 1983 Coalinga, 
California, earthquake had an immediate effect on creep 
rates along the San Andreas fault and calculated that the 
static coseismic change in normal stress resolved onto the 
San Andreas fault exceeded the change in shear stress by at 
least a factor of 2. Another familiar example is the conven- 
tional triaxial test where the axial load and the confining 
pressure together contribute to both the normal stress and 
the shear stress on the sliding surface so that changes in axial 
load necessarily lead to changes in normal stress, unless the 
confining pressure is continuously and very precisely com- 
pensated. This task of compensation is very difficult, if not 
impossible during rapid slip. 

Preliminary investigations on the transient effects of 
changes in normal stress on the resistance to sliding have 
been performed by Hobbs and Brady [1985], Lockner et al. 
[1986], and Olsson [1988]. All workers made similar obser- 
vations; in response to a sudden increase in normal stress the 
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resistance to sliding rises suddenly and then continues to rise 
toward a new steady state value as sliding proceeds. A step 
decrease in normal stress appears to yield similar results, 
with a sudden decrease in shear stress followed by a dis- 
placement dependent decay toward the new steady state 
value. Interpretation of these latter data is made more 
difficult by the tendency for instability. 

In this paper we investigate and characterize the transient 
variation in the resistance to sliding that results from 
changes in normal stress. We present data demonstrating 
that a sudden change in normal stress produces both a 
sudden and a transient variation in the resistance to sliding, 
similar in form to those observed in response to an imposed 
velocity step and consistent with observations made in the 
previous studies noted above. 

2. THEORETICAL FRAMEWORK 

In this section we present a brief review of the previously 
established framework, developed to describe the effects of 
variable slip rate, and describe how the effects of variable 
normal stress can be incorporated. 

Observations from earlier experiments can be summarized 
as follows. At constant normal stress cr and fixed load point 
velocity, the resistance to sliding, r, evolves toward a steady 
state value that depends on the slip velocity V. In response 
to an imposed step increase in load point velocity, the 
resistance to sliding increases suddenly but then decays 
toward a new steady state value as sliding proceeds. The 
decay roughly follows an exponential with characteristic 
displacement Do, and the new steady state shear stress 
depends on the new slip velocity. The response to a step 
decrease in load point velocity is fairly symmetric to that 
observed in response to a velocity increase. In some exper- 
iments the decay to steady state in response to a jump in load 
point velocity may better be described by two decay con- 
stants [Ruina, 1980, 1983; Weeks and Tullis, 1985; Tullis and 
Weeks, 1986]. 

Dieterich [1979a] argued that under the conditions of 
constant normal stress, the resistance to sliding can be 
described by the current slip velocity and a parameter 0 that 
represents the effective age of contacting asperities on the 
sliding surface and which in turn depends on the slip velocity 
history. Following an imposed step change in slip velocity, 
the effective age of the contacts gradually becomes propor- 
tional to the inverse of the new slip velocity as sliding 
proceeds. That is, 0 evolves continuously to a steady state 
value proportional to 1/V. This interpretation of 0 as the 
effective age of contacts was originally motivated by the 
observation of the linear increase in "static" friction with 

the logarithm of the duration of contact [Dieterich, 1972] and 
the common observation, from indentation tests, that the 
area of contact under the indenter also increases linearly 
with the logarithm of the contact time [Scholz and Engelder, 
1976]. Dieterich and Conrad [1984] later demonstrated that 
the so-called 0 effects disappear under ultradry conditions, 
just as the indentation-creep effect disappears during tests 
with ultradry surfaces. 

Ruina [1983] and more explicitly Rice and Ruina [1983] 
noted that the state of the sliding surface could depend not 
only on prior slip rate but also on prior normal stress. 
Following their work, we write 

r(t) =F[V(t), or(t), 01(t), 02(t), 03(t),--- , On(t)] 

(1) 

dOi/dt-Gi[V(t), or(t), 01(t), 02(t), 03(t), '--, On(t)]. 

(2) 

Here we have admitted that more than one state variable 

may be necessary to characterize changes in r and that the 
evolution laws governing the variation in the state variables 
may be functions of slip velocity, normal stress, and the 
state variables themselves, Oi. 

In this paper we employ a version of Ruina's [1980, 1983] 
simplification of the friction law proposed by Dieterich 
[1979a, 1981]' 

r =/.r*o' + Ao' In (V/V*) + Bcr In (0/0'), (3) 

where tz* represents a constant reference value of the 
coefficient of friction and 0 is a scalar variable that repre- 
sents the state of the sliding surface. If we assume that the 
steady state value of 0* is independent of normal stress, then 
when V - V* at steady state, 0 = 0* and r = tz*o'. In (3) the 
coefficients A and B are constitutive parameters that we 
estimate from laboratory measurements, and the variation of 
0 is governed by an evolution law that, in general, may 
include normal stress dependence. 

Two evolution laws have been proposed to describe the 
variation in 0 with slip, /5, at fixed normal stress' 

= (4) 
•r = const V Dc 

and 

= In . (5) 
tr = const 

At steady state, dO/dr = 0, and both (4) and (5) yield a ss = 
Dc/V. The solution of these evolution laws under the 
condition of constant slip speed are 

= •+ 0 0 - exp (6) 0 V D c 
and 

(•-•) (00Vlexp[(i•ø-l•)/Dc] o = Dr/ (7) 
for equations (4) and (5), respectively, where 0 = 00 when/5 
= /50. Equation (4) was originally proposed by Ruina [1980, 
1983] but later used extensively by Dieterich [1981, 1986, 
1987]. Equation (7) was initially proposed by Dieterich 
[1979a] and then presented in differential form (5) by Kosloff 
and Liu [1980] and Ruina [1980, 1983]. Ruina [1983] and 
several other workers (see, for example, Koslov and Liu 
[1980], Gu et al. [1984], Rice and Tse [1986], Tullis and 
Weeks [1986], and Stuart [1988]) have employed similar 
formulations corresponding to equations (3) through (7), but 
using an alternate representation for the state variable. In 
Appendix A we outline the algebraic equivalence of equa- 
tions (3) through (7) to those used by Ruina [1983] and later 
by others. There we also present our proposed formulation 
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Displacement transducer 

Fig. 1. Sample assembly and configuration of applied loads for the double direct shear apparatus. The displacement 
transducer is mounted directly on the specimen. 

for normal stress dependence, as developed later in this 
paper, but using the alternative definition of state. 

We next present our experimental observations and then 
extend the previously proposed evolution laws, equations (4) 
and (5), to incorporate the effects of variable normal stress 
on state. In Appendix B we offer a physical interpretation of 
state that considers changes in normal stress and is consis- 
tent with both classical friction theory and earlier interpre- 
tations of 0. 

3. EXPERIMENTAL PROCEDURE 

All of the tests were performed in the double direct shear 
apparatus employed by Dieterich [1972, 1981] and Ruina 
[1983]. We have modified the apparatus to allow for rapid 
servo-control of both normal stress and load point displace- 
ment. We aligned and tested the two nominally perpendicu- 
lar loading frames in an effort to maximize the degree to 
which the two independently controlled hydraulic rams 
individually provide the applied normal stress and shear 
stress. In addition, we mounted the displacement transducer 
(DCDT) directly on the sample (Figure 1) to minimize 
interactions between normal stress control and load point 
displacement and to increase the load point stiffness. The 
resulting load point stiffness is about 0.5 MPa//xm. Even with 
our improvements to the apparatus, imposed changes in 
horizontal load do result in small, measurable changes in 
vertical load. That is, imposed changes in normal stress 
result in small changes in shear stress. These changes in 
shear stress are fully recoverable, and their magnitude 
appears to scale linearly with the magnitude of imposed 
change in normal stress. The measured coupling coefficient, 
S -= A r/Art, is about 0.2. We conclude that the source of the 
coupling is purely elastic and is probably caused by Pois- 
son's effect within the sample and slight misalignment of the 
apparatus, which together result in an error signal that is sent 

to the displacement servo and which in turn results in a 
change in vertical load that accompanies an imposed change 
in horizontal load. Later, using numerical simulations, we 
will show how this elastic coupling complicates the data 
analysis but does not affect our major conclusions. 

For the purposes of this paper, we employ the manufac- 
turer-supplied transducer sensitivity for determining dis- 
placement and expect that these values are accurate to about 
10% or better. We have amplified the output of the DCDT so 
that a change of 1 mV corresponds to a displacement of the 
load point of about 0.02/am. 

We selected commercial load cells that allow measure- 

ment of changes in shear and normal stress precise to about 
0.009 and 0.004 MPa, respectively. At a normal stress of 5.0 
MPa this precision corresponds to better than 0.1% for 
normal stress changes. After performing these tests, we 
discovered a calibration error that leads to systematic errors 
of about 5% in normal stress and in the coefficient of friction. 

To avoid the awkward numerical values that result from the 

corrections of this error, the values of normal stress reported 
here are the nominal values that do not take this calibration 

error into account. To obtain the actual values, one should 

multiply the values reported here by 0.95. Servo-control of 
normal stress approaches the resolution of the amplified load 
cell output and corresponds to about 0.01 MPa, or about 
0.2% at 5.0 MPa. The loop gain for control of normal stress 
is adjusted to minimize overshoot in response to commanded 
step changes, while still maintaining reasonably rapid re- 
sponse. A commanded step in normal stress of 2.5 MPa 
requires less than 150 ms, and the overshoot is about 0.01 
MPa. The response time for displacement servo-control 
through the vertical ram is similarly rapid. Shear stress, 
normal stress, and load point displacement were recorded as 
analog records using low-speed strip chart and xy recorders. 
The amplified output of the normal stress load cell was 



4926 LINKER AND DIETERICH: EFFECTS OF VARIABLE NORMAL STRESS 

1.0pm/s 0.1 pm/s 1.0 pm/s 0.1 pm/s 

c 

Evolution Law 1 

Evolution Law 2 • 

DISPLACEMENT, 10 pm / division 

Fig. 2. Shear stress on the sliding surface versus load point displacement for representative tests in which the load 
point velocity is stepped by one decade. The normal stress is held constant at 5 MPa. The top curve is data. The lower 
two curves are simulations, which include the effects of load point stiffness and are based on equation (3) and the two 
evolution laws 1 and 2 represented by equations (4) and (5), respectively. The parameter values used in the simulations 
are listed in Table 1. The load point stiffness is sufficiently high, as indicated by the nearly vertical rise in shear stress 
in response to a step increase in load point displacement rate, so that the abscissa can be considered to represent 
displacement on the sliding surface. 

additionally monitored with a digital voltmeter and an oscil- 
loscope. 

The sliding tests were performed on blocks of Westerly 
granite with 5 x 5 cm sliding surfaces. All of the friction tests 
were performed with surfaces that were initially ground flat 
on a surface grinder and then lapped by hand using/•60 grit 
silicon carbide and water on a glass plate. The extent of the 
lapping guaranteed that the relic surface was completely 
removed. Following lapping, the sliding surface was within 
0.025 mm of flat and parallel to the reference surface. 
Surface profiles of representative samples were measured 
with a profilometer carrying a 40-/xm-radius tip [Okubo, 
1986]. Prior to the friction tests the rms roughness of the 
samples was about 19/xm. 

Newly lapped samples were preconditioned by sliding 
them for several millimeters at a velocity of 10/xm/s and a 
normal stress of 5.0 MPa until shear stress stabilized to 

within about 0.01 MPa during displacement of 100/xm. This 
preconditioning typically involved 6 mm of displacement. 
The data reported below disregard long-term drift, which is 
always within the 0.01 MPa per 100/xm limit. 

Following the tests, we inspected the sliding surfaces 
under a hand lens and observed that the wear pattern is 
surprisingly uniform across the sample. The sliding surfaces 
become covered with a light dusting of rock flour as a result 
of the sliding test. 

4. OBSERVATIONS 

The Experiments 

We performed four types of frictional sliding tests. In the 
first type, step changes in load point velocity are imposed 
and the normal stress is held constant for the duration of the 

test. This is the standard velocity stepping test that has been 
performed by earlier workers. In the three remaining tests, 
referred to as normal stress step, normal stress pulse, and 
hold-pulse tests, the normal stress is altered during the test. 
In all tests the reference normal stress was 5.0 MPa, and the 
nominal load point speed was 1 tzm/s. All tests were per- 
formed from an initial steady state shear stress. 

In this section we present observations from only the 
velocity step, normal stress step, and normal stress pulse 
tests. The fourth test, the hold-pulse test, is presented and 
discussed later in section 6 ("tests of the proposed constitu- 
tive law"), since its interpretation is substantially more 
involved than that of the other three tests and since its main 

purpose is to test our model, rather than to help develop or 
constrain it. 

Velocity Stepping Tests 

Velocity stepping tests, analogous to those of Dieterich 
[ 1979a, 1981 ], Ruina [1983], Weeks and Tullis [1985], and 
Tullis and Weeks [1986], were performed to estimate the 
value of constitutive parameters related to changes in im- 
posed slip rate at constant normal stress, i.e., A, B, and D c . 
These constitutive parameters are later included in our 
analysis of the effects of variable normal stress. The slip 
rates ranged from 0.05 to 2.0/xm/s, and the imposed changes 
in slip rate were one decade. Our observations are consistent 
with the references cited above. As these earlier workers 

have observed, in response to a step increase in load point 
velocity, the shear stress rapidly increases and then decays 
to a new, steady value as sliding proceeds (Figure 2). The 
decay to steady state shear stress roughly follows an expo- 
nential with a characteristic displacement, D•., of about 1 to 
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TABLE 1. Model Parameters Determined Directly From the 
Experimental Records (Data) and Numerical Simulations 

Using Evolution Law 1 and Evolution Law 2 

Data Law 1' Law 2* 

0.0104 -+ 0.0007-½ 
0.0116 -+ 0.0008-½ 

1-2/ams 
0.20õ 
0.18 _ 0.03ô 
0.5 -+ 0.1 MPa//xmô 

0.012 0.0145 

0.0135 0.016 

2.25 
0.23 0.56 

*Values listed below were determined by trial and error, in 
numerical simulations of the experiments, to simultaneously best 
represent the experimental records from all of the tests. 

?Least squares fit, and accompanying standard deviation, to data 
from 11 velocity steps. 

SEstimated by fitting an exponential to two points of the decay 
curves from the velocity stepping tests. The range represents the 
variation among the experiments, not the error due to the estimation 
method. 

õLeast squares fit to the data in Figure 5. 
ôThe uncertainty represents the variation among the data, but not 

in a rigorous statistical sense. 

2/am. The response to a step decrease in load point velocity 
is approximately symmetric to that of a step increase. That 
is, a rapid decrease of shear stress is followed by an 
asymptotic rise toward a new steady state value as sliding 
proceeds. In all of our velocity stepping tests, the steady 
state shear stress decreases very slightly with increasing slip 
velocity. This behavior is commonly referred to as steady 
state velocity weakening. 

Our estimates of the parameters A, B, (equation (3)), and 
D c, based on the velocity stepping tests, are listed in Table 
1. The values listed in the data column represent mean and 
standard deviations from 11 step increases and decreases in 
load point velocity. For each step change in load point 
velocity, A, B, and D•. were determined directly from the 
experimental records under the assumption that a step 
change in load point velocity results in a equivalent step 
change in slip rate, or rather, that the load point stiffness is 
infinite. We further assumed that in response to an instanta- 
neous step increase in slip velocity, 0 remains constant so 
that the resulting jump in friction is a measure of A. With 
continued sliding at the new slip speed, 0 evolves toward a 
new steady state value that depends on the new slip velocity 
so that the magnitude of the decay in shear stress is a 
measure of B. We estimated values of D•. by assuming that 
the decay of r follows an exponential (substitute (7) into (3)). 
In our fitting procedure, only two points on each decay curve 
were used to determine D c. We estimate that the uncertainty 
in this measurement of D c, due to the variation in the data, 
is about a factor of 2. 

Normal Stress Step Tests 

Normal stress step tests consist of a step change in normal 
stress during sliding at fixed load point velocity of 1 /am/s. 
Both steps up from and steps down to the nominal 5.0-MPa 
normal stress were imposed. Similar tests were performed 
by Hobbs and Brady [1985], Lockner et al. [1986], and 
Olsson [1988]. 

Following a step in normal stress, sliding was continued 
until the shear stress versus displacement record appeared 
flat. At this point, another step was introduced. The entire 

process was repeated until the DCDT reached its displace- 
ment limit. Step changes in normal stress of 1, 2, 4, 5, 10, 20, 
and 40% of 5.0 MPa were imposed. Several tests were 
performed for each amplitude. 

Figure 3 shows representative shear stress versus load 
point displacement records from the normal stress step tests. 
As indicated in the figure, a step increase in normal stress 
causes a sudden increase in shear stress, due to the elastic 
coupling between normal stress and shear stress, by an 
amount indicated by the diamonds. As displacement of the 
load point continues, the shear stress rises further, now 
along the elastic loading curve of the load point. Eventually, 
the shear stress versus displacement path departs from the 
elastic loading curve, at a point indicated by the dots in 
Figure 3, and increases asymptotically toward a new value 
that is independent of displacement. The asymptotic rise 
toward steady state roughly follows an exponential. Inter- 
estingly, the characteristic displacement associated with the 
normal stress steps is about the same magnitude as that 
observed in the velocity step tests. To see this, compare the 
decay curves of Figure 3 with those of Figure 2. 

The response to a step decrease in normal stress is roughly 
symmetric to that of a step increase. However, owing to the 
finite stiffness of the load point and the finite response time 
of the displacement servo, sudden drops in normal stress 
tend to result in less well controlled slip. Because of this 
complication, we have chosen not to include the data from 
downward steps in our analysis. Not surprisingly, very large 
step decreases in normal stress lead to unstable sliding. 

The amplitude of both the total change in r and the 
displacement-dependent change in r increase with the am- 
plitude of the normal stress step. Likewise, the duration of 
loading along the elastic loading curve increases with the 
amplitude of the normal stress step and is generally less than 
1 s. The steady state coefficient of friction, about 0.7, is 
approximately unaffected by the change in normal stress. 

The distinction between the elastic coupling of shear 
stress to normal stress versus loading along the elastic 
loading curve of the load point is not obvious in reproduc- 
tions of the shear stress versus displacement records (Figure 
3), and we have no high-speed recordings with which to 
easily demonstrate the temporal details during this early 
portion of the test. However, while we were performing the 
experiments, the distinction between the two processes was 
quite obvious. The former occurred immediately upon the 
increase in normal stress, while the latter occurred relatively 
slowly. 

The transient effects that we have observed are in general 
agreement with those made by Hobbs and Brady [1985] and 
by Olsson [1988]. However, in the normal stress step tests 
by Hobbs and Brady, audible seismic events accompanied 
not only decreases but also increases in normal stress. 
Olsson occasionally observed slight overshoot of the shear 
stress in response to increases in normal stress. We expect 
that both of these effects are due to the interaction of the 

testing machine with the specimen rather than being intrin- 
sically related to the constitutive behavior of the rock. 
Locknet et al. [1986] similarly concluded that all of the 
transient effects observed in their experiments were a result 
of variations in slip rate owing to the interaction of the load 
point stiffness and the frictional behavior of the rock. 

In the normal stress step tests, during the period while 
shear stress rises along the elastic loading curve, the slip rate 
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5% 10% 

20% - 40% 

DISPLACEMENT, 20 gm / division 

Fig. 3. Shear stress versus load point displacement for representative tests in which the normal stress is rapidly 
stepped while the load point displacement rate is held constant at 1/zm/s. The magnitude of the normal stress changes 
are indicated in relation to the reference normal stress of 5 MPa. The diamonds represent the elastic response of shear 
stress to the imposed change in normal stress. The dots indicate the point at which the stress versus displacement curve 
departs from the elastic loading curve. 

is not doubt less than the nominal rate so that our data are 

potentially affected by apparatus effects similar to those 
encountered by the previous workers. However, as we 
demonstrate later via numerical simulation, the small pertur- 
bations in slip rate that occur during our tests cannot account 
for the transient effects seen in the data. 

Normal Stress Pulse Tests 

With the normal stress pulse tests, the load point velocity 
is again held constant at 1 •m/s for the duration of the test. 
After reaching an initial steady state shear stress, the normal 
stress is briefly pulsed. The pulse consists of a rapid step up, 
followed shortly by a step down to the original normal stress. 
The commanded duration of each pulse is 200 ms. Upon 
completion of the stress pulse, sliding continues until the 
shear stress versus displacement curve becomes flat. At that 
point, another normal stress pulse is introduced. The ampli- 
tudes of the pulses range from 1 to 40% of the nominal 
5.0-MPa normal stress, as in the normal stress step tests. 
Sequences of pulses conducted in the above manner with 
descending amplitude produce similar response to sequences 
with ascending pulse amplitude. Representative data are 
shown in Figure 4. At least two tests were performed for 
each pulse amplitude. 

The immediate response of a normal stress pulse is a shear 
stress pulse, which occurs as the result of the previously 
noted elastic coupling of shear stress to normal stress. As 
expected, the amplitude of this pulse, which can be seen as 
spikes in Figure 4, scales linearly with the amplitude of the 
normal stress pulse, and the scale factor, S = At/Act, is 

about 0.2. Note also the correspondence between the ampli- 
tude of the spikes in Figure 4 and the diamonds in Figure 3. 
Following the normal stress pulse and accompanying shear 
stress pulse, the shear stress returns to roughly the initial 
steady state value, rises to a second peak, and then decays 
gradually to a steady state shear stress as sliding proceeds. 
The amplitude of the second peak in shear stress increases 
with the amplitude of the normal stress pulse, and the decay 
roughly follows an exponential with approximately the same 
characteristic displacement as for the normal stress step and 
velocity step tests. Again, compare the decay curves of 
Figures 4, 3, and 2. 

Typically, the steady state shear stress following the 
decay is equal to the value prior to the normal stress pulse. 
The exceptions are tests in which the initial pulse amplitude 
is 40%. These tests often yield a final steady state shear 
stress that is greater than the initial steady state shear stress 
by about 0.6%. Curiously, repetitions of the 40% pulse 
consistently result in decays back to this new, slightly higher 
value of steady state shear stress. 

We attribute the apparent increase in steady state shear 
stress following an initial, large normal stress pulse to 
friction within the sample assembly. The design of the 
sample assembly (Figure 1) allows the side blocks of the 
sample and the steel support blocks of the sample assembly 
to slide horizontally. Slip may occur on any of these hori- 
zontal surfaces in response to a change in horizontal load, if 
the frictional resistance is overcome. Consequently, if the 
sample assembly does not return to its initial configuration 
when the horizontal load is returned to its initial value, then 
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•o/o = 2% 5% 10% 

10% 20% 40% 

40% 20% 10% 

DISPLACEMENT, 20 pm / division 

Fig. 4. Shear stress versus load point displacement for representative tests in which the normal stress is rapidly 
pulsed while the load point displacement rate is held constant at ]/•m/s. The pulse consists oœ a rapid step up œollowcd 
shortly by a rapid step down and has a duration of about 200 ms. The amplitude of the pulse is indicated in relation to 
the reference normal stress of $ MPa. The sharp spikes in shear stress result from direct elastic coupling of shear stress 
to normal stress and correspond to the diamonds in Figure 3. 

the normal stress on the rock to rock interface, following the 
pulse, will not return to its initial nominal value. The 
magnitude of this effect, as indicated by the 0.6% increase in 
steady state shear stress in response to the 40% pulse in 
horizontal load, is no more than about 0.6% of the normal 
stress or 0.03 MPa. We conclude that in the absence of such 

apparatus effects, a 40% pulse in normal stress would always 
result in a decay back to the initial steady state shear stress. 

Summary of Normal Stress Step and 
Normal Stress Pulse Data 

We have demonstrated that either a step or a pulse in 
normal stress produces a sudden change in shear strength 
and that, with continued sliding, the shear stress evolves 
toward a steady state value. In Figure 5 we have plotted the 
normalized change in shear strength that occurs during 
sliding, A,r/rrfinal , versus a measure of the size of the normal 
stress perturbation. In the case of the normal stress step 
data, A r was obtained by estimating the point at which the 
shear stress versus load point displacement deviates from 
the elastic loading curve. Again, note the dots in Figure 3. 
Though there is some ambiguity in this picking procedure, 
we found that two observers would typically pick the same 
point to within about 6% of the total change in shear stress. 
For example, given a steady state coefficient of friction of 
0.7, then in response to a 10% increase in normal stress from 
an initial normal stress of 5 MPa, the total change in shear 
stress is about 0.35 MPa, the portion of this change that 
occurs during sliding, At, is about 0.11 MPa, and the 
uncertainty in Ar resulting from the ambiguity is about 0.02 
MPa. 

We represent the values of Ar from the normal stress step 
tests, plotted in Figure 5, with the empirical relation 

• = a In , (8) 

where rr 0 is the initial normal stress, rr is the final normal 
stress, Ar is the amplitude of the change in shear stress that 
occurs during sliding, and a is a scale factor. The value of a, 
corresponding to the least squares fit line to the data in 
Figure 5, is 0.20. The ambiguity in the picking procedure 
introduces an uncertainty in the value of a of about 0.04. 
Upon inspecting Figure 5, one would conclude that the value 
of a, as defined by the procedure outlined here, is well 
constrained by the data. That is, the solid dots fall very close 
to the straight line. However, by including the effects of the 
finite load point stiffness in numerical simulations of these 
experiments, we will later demonstrate that our measure- 
ments of A r may be biased to the degree that this initial 
estimate of a is too small by more than a factor of 2. 

5. PROPOSED CONSTITUTIVE LAW 

Assumptions 

In this section we develop a constitutive model to repre- 
sent the changes in r that result from changes in tr and V. 
Our proposed constitutive model extends the earlier model, 
summarized by equations (1) through (5), to incorporate the 
effects of changes in tr. For the purpose of our analysis, and 
for sufficiently small changes in normal stress, we assume 
that the steady state coefficient of friction is independent of 
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Fig. 5. The change in the coefficient of friction that occurs 
during sliding, following a perturbation in normal stress, is plotted 
versus the logarithm of the normalized amplitude of the perturba- 
tion. The initial normal stress is •r 0, the maximum normal stress is •r, 
and the final normal stress is o'fina I . The value of the change in the 
coefficient of friction represents the amplitude of the transient 
change in shear stress normalized by o'fina ! . Data from both the 
normal stress step tests (dots) and normal stress pulse tests 
(squares) are plotted. As in Figure 3, the dots correspond to the 
point at which the stress versus displacement curve departs from the 
elastic loading curve. The numbers 2 and 3 indicate the number of 
replicate measurements that plot at the position indicated in the 
figure. The line drawn through the data is the least squares fit to the 
normal stress step data, constrained to pass through the origin, and 
has a slope of 0.20. 

would produce no net change in 0. These three assumptions 
form the simplest extension of the earlier constitutive model 
in which 0 is determined by contact area [Dieterich, 1979a; 
Dieterich and Conrad, 1984]. 

Experimental Basis for the Proposed 
Constitutive Law 

As described previously, the sudden increase in rr results 
in a sudden increase in r followed by a further increase, in 
which r asymptotically approaches a new steady state value 
as sliding proceeds. We have assumed that 0 ss is indepen- 
dent of normal stress and that 0 ss = D c/V. Therefore the 
evolution of state that occurs during sliding, following the 
increase in rr, must be toward the initial steady state value. 
We conclude that the sudden increase in rr must result in a 

sudden change in 0 and that, with continued sliding at the 
higher normal stress, this change in 0 is fully recovered as 0 
returns to 0 ss. 

We define A r as the change in r that occurs during sliding 
as the result of the sudden increase in rr. Using (3) and this 
definition of At, we obtain 

where 0 is the value immediately following the step increase 
in normal stress, but prior to any sliding, and rr is the value 
following the step in normal stress. Earlier, we observed that 
Ar can be represented empirically by (8). Substituting (8) for 
A r into (10) yields 

0 = 0 ss . (11) 

Equation (11) gives the value of 0 immediately following the 
rapid increase in normal stress, from rr 0 to rr. Since a is 
greater than B (Table 1), the effect of the step increase in rr 
is to suddenly decrease state from 0 ss to 0. 

normal stress. Furthermore, we assume that 0 ss is indepen- 
dent of normal stress. Consistent with the earlier model, we 
maintain the definition that 0 ss = Dc/V. Thus implicit in our 
assumptions, we have assumed that D•. is also independent 
of normal stress. In addition, we assume that the constitutive 
parameters A and B, equation (3), are independent of normal 
stress for the range of normal stress examined here. 

To represent the normal stress effects, we make the 
following three assumptions: 

1. Changes in rr result in changes in state. 
2. All state effects that result from changes in rr and from 

changes in V can be expressed by the state variable 0. This 
statement admits more than one characteristic displacement 
but only one functional dependence of 0 on rr and V: 

dOi 
= G(V, rr, Oi, Dc,). (9) dt 

3. A sudden change in rr results in a sudden change in 0 
that is symmetric with regard to increases versus decreases 
in rr. For example, a pulse in normal stress of zero duration 

An Evolution Law for 0 

Equation (11) was derived to represent the special case of 
a step increase in rr that occurs from steady state. We 
postulate that the form of equation (11) also holds for the 
more general case in which a step increase in rr occurs from 
an initial state 00: 

0 = 00 , (12) 

where 00 is the value prior to an increase in normal stress 
from rr 0 to rr and 0 is the value immediately following the 
change in rr. We postulate further that (12) also applies to a 
decrease in normal stress where rr is less than •0. 

According to our proposition, the value of 0 immediately 
following a rapid, finite change in •is given by equation (12). 
Differentiating (12), we obtain the general expression that 
governs the evolution of 0 in response to a change in •: 

= - , (13) 
b = const 
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where 0 and rr correspond to the values immediately follow- 
ing a rapid change in rr. By combining (13) with an expres- 
sion that governs the evolution of 0 in response to slip, or a 
change in slip rate, we obtain the governing equation for the 
evolution of 0 applicable to conditions of variable rr and V: 

db - do'. (14) 

Equations (4) and (5) are two particular examples of (Off 
0•)rr=cons t. In the following, the use of equation (4) in (14) is 
referred to as evolution law 1, and use of equation (5) in (14) 
is referred to as evolution law 2. 

Equation (14) forms the principal product of this study. It 
is our proposed expression for how state varies under 
conditions of variable slip rate and normal stress. In Appen- 
dix B we discuss our physical interpretation of state under 
such conditions. 

6. TESTS OF THE PROPOSED CONSTITUTIVE LAW 

We test our proposed constitutive law by comparing 
model predictions with the data. The comparisons allow us 
to test two of our propositions: (1) the state variable 0 is 
sufficient to represent the variation in T that results from 
changes in both slip rate and normal stress, and (2) from a 
general state 00, the sudden change in 0 that results from a 
change in tr can be represented by (12). 

The model predictions are generated by numerical simu- 
lations, which incorporate the proposed constitutive law and 
include the mechanical effects of the double direct shear 

apparatus. Initially, we consider whether the effects that we 
have ascribed to a dependence of 0 on tr could be attributed 
solely to slip rate effects. Next, we analyze the relatively 
simple normal stress step test and then the somewhat more 
complicated normal stress pulse test. Finally, we analyze 
data from the, yet to be presented, hold-pulse tests, which 
severely test the proposed constitutive model by intention- 
ally varying both normal stress and slip rate. 

Numerical Method 

The numerical model employs the proposed constitutive 
relations, equations (3) and (14), and represents apparatus 
interactions as a simple spring and slider system with cou- 
pling of shear stress to normal stress as described below. In 
this system, motion of the load point corresponds to the 
point at which displacements are sensed for servo-control, 
and the spring represents the shear stiffness K of the sample 
assembly between the displacement sensing point and the 
sliding surfaces. The applied shear stress T is 

r = K(dt- a), (15) 

stress observed in the normal stress step experiments (Fig- 
ure 3), and more dramatically in the normal stress pulse 
experiments (Figure 4), a similar coupling of shear stress to 
imposed normal stress is included in the model: 

SArr -• At, (16) 

where Ar is the immediate change of shear stress resulting 
from an imposed change in normal stress/xrr. The factor S is 
about 0.2 in our experiments. Recall that the coupling of 
shear stress to changes in normal stress occurs because the 
vertical ram is servo-controlled in relation to the load point 
displacement, not in relation to either slip or shear stress. 
Since the horizontal ram is controlled in relation to load, 
there is not a comparable coupling of normal stress to 
changes in shear stress. 

Motion of the slider and the corresponding shear stress are 
the quantities to be determined. The simulations employ a 
time-marching procedure that assumes constant slip speed 
and constant normal stress during a time step. Steps in rr 
required by the simulations occur instantaneously between 
the time steps. The calculation of unknown slip speed 
requires that, at the midpoint of the step, the frictional 
resistance Tf is equal to the applied stress T e. The slip speed 
that satisfies this condition is iteratively determined using a 
predictor-correcter method. Each iteration begins with a 
trial r«, where i indicates the ith iteration. The first iteration 
begins with rfi set equal to the known stress at the beginning 
of the step. The trial slip speed Vtria 1 that yields a frictional 
resistance equal to 'r« at the midpoint of the step is calculated 
from the constitutive relations. This calculation employs the 
explicit V -- const, rr- const solution of the evolution 
equations to evolve 0 through the time step, as given by 
equations (6) and (7) for evolution law 1 and evolution law 2, 
respectively. The spring distortion and corresponding elastic 

i 
stress at the midpoint, Te, are then calculated using Vtria 1. If 

•«+ i I > then another iteration is performed using • T e -- Terro r, 
1 i 

-- Te ' 

This method is numerically stable for step sizes as large as 
0.1D•. and is relatively easy to implement. For the simula- 
tions reported here, Terro r = 10-4rr and the time step solution 
generally converges after three iterations or less. The solu- 
tions are insensitive to the size of the steps, provided A3 -< 
0.05D•. and provided Adt --< 0.05D c. In the simulations 
reported below, the steps were adjusted such that A3 _< 
0.02D c and Adt --< 0.02D c. 

The constitutive and model parameters used for the fol- 
lowing simulations are listed in Table 1 and were deter- 
mined, by trial and error, to give the most satisfactory fit to 
all of the experiments. Though the optimal parameter values 
differ for the two evolution laws, all are in rough agreement 
with the values determined directly from the data, with the 
exception of a. Determination of a is discussed below. 

where d t is the displacement of the load point and • is the 
displacement of the slider. The appropriate stiffness for the 
simulations was measured from experimental loading curves 
where it was found to be 0.5 _+ 0.1 MPa/tzm. For these 
simulations we have not included the time response of the 
servo-control systems for either load point or normal stress 
control. Rather, the displacement of the load point follows 
the prescribed history, and changes in normal stress are 
applied directly to the slider. 

To represent the elastic coupling of shear stress to normal 

Confirmation of State Dependence 
on Normal Stress History 

First we test whether the effects that we have ascribed to 

a dependence of state on normal stress history could be 
caused solely by perturbation of slip rate arising from finite 
load point stiffness. We test this hypothesis by performing 
simulations of the normal stress step and normal stress pulse 
experiments assuming no dependence of state on normal 
stress history, i.e., a = 0. 
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Fig. 6. Simulations of (a) normal stress step experiments and (b) normal stress pulse experiments, using the 
parameter values listed in Table 1 but with the parameter a set to zero and employing evolution laws 1 and 2, 
respectively. Unlike the data in Figure 3, simulations of the step experiments result in a shear stress overshoot following 
the step increase in normal stress. Simulations of the pulse tests do yield the elastic coupling of shear stress to normal 
stress that is seen in the data (Figure 4) but do not yield the observed transient change in shear stress that occurs during 
sliding. The failure of these simulations to match the principal features of our data demonstrates that the observed 
effects of variable normal stress are not due solely to slip rate effects, which act through the finite load point stiffness 
of the apparatus, but rather that the state variable depends on normal stress history. 

Examples of normal stress step and normal stress pulse 
simulations with a = 0, but with all other parameters as 
listed in Table 1, are shown in Figure 6. The simulations of 
the normal stress step test with a = 0, Figure 6a, result in a 
transient peak in shear stress and subsequent decay to the 

steady state value in response to a step increase in normal 
stress while the data, Figure 3, reveal a monotonic rise in 
shear stress toward the steady state value. The simulations 
of the pulse tests with a = 0, Figure 6b, fail to show the 
postpulse peak in shear stress that is seen in the data, Figure 
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Fig. 7. Data and simulations from normal stress step tests. The simulations use the parameter values listed in Table 
1. On the experimental records, the dots indicate the value Ar used to produce Figure $. Similarly, on the simulations, 
the dots denote the value of A r corresponding to the value of a, 0.20, derived from the least squares fit to the data in 
Figure $. For the most part, the dots appear to mark adequately the point at which the shear stress paths depart from 
the linear portion of the curves even though the value of a used in the simulations with evolution law 2 employed a = 
0.56. The exception is the 40% step using evolution law 1. The diamonds represent the elastic coupling of shear stress 
to normal stress, as in Figure 3. 

4. The inability of these simulations to match the data is a 
demonstration that the perturbation of slip rate, which 
occurs in our experiments, cannot alone account for the 
data. Therefore the transient effects observed in our data 

must be due, at least in part, to a dependence of state on 
normal stress history. 

Normal Stress Step and Normal Stress 
Pulse Experiments 

The normal stress step experiment is relatively simple in 
that it involves only a single, sudden change in normal stress 
and thus only a single sudden perturbation of 0 from its initial 
value, 0 ss. In contrast, the pulse experiment is a more 
severe test of the constitutive model, since there a second 
sudden change in 0 occurs at a time when 0 is not at steady 
state. During the pulse experiment, 0 first decreases from its 
initial value, 0 ss , in response to the step increase in normal 
stress, just as in the step experiment, according to equation 
(11). Then, during the brief 0.2-s interval between the step up 
and the step down in normal stress, 0 evolves toward steady 
state, again, just as in the step experiment. Next, according 
to the proposed constitutive law, 0 increases suddenly in 
response to the downward step in normal stress, by an 
amount equal and opposite to the previous sudden change in 
0, even though this second sudden change in 0 takes place 
from a value other than 0 ss . This symmetric response of 0 to 
a decrease in normal stress relative to an increase in normal 

stress, at a time when 0 is not equal to 0 s• , is the assumption 
of equation (12). Notice that under this assumption, if the 
pulse had zero duration and the amount of slip that occurred 
during the pulse was also zero, then the net change in 0 in 
response to a pulse would be zero so that a pulse in normal 
stress would yield no transient change in shear stress. 

We compare data from normal stress step tests to simula- 
tions using the two evolution laws, 1 and 2, and the corre- 
sponding best values of a, 0.23 and 0.56, respectively 
(Figure 7). The value of a estimated directly from the 
experimental curves, 0.20, is reasonably close to the pre- 
ferred value determined in the simulations using evolution 
law 1, 0.23, but differs by more than a factor of 2 from the 
value of 0.56 determined using evolution law 2. The dia- 
monds on the curves in Figure 7 indicate the immediate jump 
in shear stress due to the elastic stress coupling effect. The 
dot on the two experimental curves marks the stress that was 
picked to produce the data in Figure 5 and the corresponding 
value of a, 0.20. Likewise, the dots on the simulations 
correspond to the linear fit to the data in Figure 5, a = 0.20, 
and in most cases adequately mark the point at which the 
stress-displacement curves begin to deviate from the linear 
trend. Therefore our picking procedure, if applied blindly to 
the stress-displacement records produced by the simula- 
tions, would yield a value of a about equal to 0.20 even 
though the simulations employing evolution law 2 used a = 
0.56. This discrepancy between the picked value of a, 0.20, 
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Fig. 8. Data and simulations from normal stress pulse tests. The top curve is data. The lower three curves are 

simulations. The simulations use the parameter values listed in Table 1. In each of the simulations, a shear stress spike 
results from elastic coupling of shear stress to normal stress, and its amplitude corresponds to the diamonds in Figure 
7. The first simulation uses evolution law 1 and the nominal load point speed of 1.0/•m/s. In the resulting curves the 
shear stress transient has merged with the spike that results from the elastic coupling of shear stress to normal stress. 
The second simulation uses evolution law 1 and a load point speed of 0.1 /•m/s. The choice of 0.1 /•m/s is ad hoc but 
does produce curves that look much like the data. The last simulation uses evolution law 2 and the nominal load point 
slip speed of 1 /•m/s and appears to match the data adequately. 

and the value that best simulates the data when using 
evolution law 2, 0.56, results from the complex interaction of 
the load point and the sliding surface. One lesson to be 
learned here is that only by performing numerical simula- 
tions, which adequately model the interaction between the 
apparatus and the specimen, are we able to draw reliable 
conclusions from our friction data. We conclude that the 

normal stress step test does not provide an accurate measure 
of a if indeed evolution law 2 applies. 

The one exception to the general pattern of agreement 
between the simulations and the data from the normal stress 

step tests displayed in Figure 7 is the case of evolution law 1 
for the 40% step in normal stress; see Figure 7b. For this one 
case the knee in the curve is very abrupt, i.e., the apparent 
decay distance is very short, and the dot corresponding to a 
= 0.20 grossly misses the departure of the shear stress path 
from the elastic loading curve. We have no explanation for 
this discrepancy. 

Next, we compare simulated and observed shear stress 

versus displacement curves for the normal stress pulse 
experiments (Figure 8). In each of the simulations, a shear 
stress spike results from the elastic stress coupling effect and 
its amplitude corresponds to the diamonds in Figure 7. Two 
different simulations are shown using evolution law 1. In the 
first the velocity of the load point is maintained at the 
nominal experimental rate of 1.0 t•m/s, while in the second 
the load point velocity during the pulse is assumed to be 0.1 
t•m/s. In the first case the shear stress transient that occurs 
following the normal stress pulse merges with the shear 
stress spike that results from the stress coupling effect. This 
merging is not seen in the data. In addition, the amplitudes of 
the shear stress transients, corresponding to the normal 
stress pulses of 2%, 5%, and 10%, significantly exceed the 
observed values. In the second case, where the load point 
velocity during the pulse is assumed to be 0.1 t•m/s, the 
simulations appear more like the data. That is, the shear 
stress transient following the normal stress pulse does not 
merge with the shear stress spike, and furthermore, the 
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Fig. 9. The change in the coefficient of friction that occurs 
during sliding, following a pulse in normal stress, is plotted versus 
the logarithm of the normalized amplitude of the pulse. As in Figure 
5, the value of the change in the coefficient of friction represents the 
amplitude of the transient change in shear stress normalized by the 
final normal stress, o'shal. The data are taken from Figure 5. The 
curves represent simulations of pulse tests using the two evolution 
laws and the parameter values listed in Table 1. A load point 
velocity of 0.1 /xm/s is assumed during the pulse for the simulations 
using evolution law 1, while those using evolution law 2 use the 
nominal 1.0 txm/s. 

amplitudes of the shear stress transients are comparable to 
those from the experiments. The use of 0.1 ttm/s for the load 
point velocity is ad hoc but motivated by the possibility that 
the response of the servo-control may be too slow to 
maintain the load point velocity at the desired rate during the 
0.2-s pulse. Unfortunately, we have no independent measure 
of load point velocity during a pulse with which to test this 
hypothesis. In the third simulation, where evolution law 2 is 
used (Figure 8), no adjustment of the load point velocity is 
required to provide an acceptable representation of the 
experimental curves. 

The amplitude of the shear stress transients that were 
generated by simulation of the normal stress pulse tests is 
compared with the experimental results in Figure 9. The 
simulations with evolution law 1 use a load point velocity of 
0.1 ttm/s during the pulse, while those with evolution law 2 
use the nominal 1.0 ttm/s. While the simulations using either 
evolution law are in rough agreement with the data, evolu- 
tion law 2 appears to be superior, especially for large normal 
stress pulses. 

In summary, we have tested the proposed constitutive 
model against our observations from the normal stress step 
experiments and the normal stress pulse experiments. We 
conclude that the assumptions required to obtain equation 
(12) from equation (11) are supported by the data from the 
pulse tests. Our simulations of the relatively simple s{ep 
experiment appear to adequately represent the experimental 
data with the exception of the 40% steps using evolution law 
1. The constitutive model also appears capable of character- 
izing the observations from the more severe normal stress 
pulse tests. Here again, however, the validity of evolution 
law 1 appears somewhat questionable because of the exper- 

imentally unsubstantiated need to alter load point displace- 
ment rates during the normal stress pulse. 

The Hold-Pulse Tests 

As a further and yet more rigorous test of the constitutive 
model, we have conducted experiments in which both nor- 
mal stress and load point velocity are varied. In these tests, 
the normal stress is briefly pulsed while the load point is held 
stationary for a measured duration. Then, following the 
hold, the load point displacement is resumed at the initial, 
nominal rate. We refer to these experiments as "hold-pulse" 
tests. As in our previous tests, the nominal load point 
displacement rate is 1.0 /am/s, and the reference normal 
stress is 5.0 MPa. The duration of the hold is measured from 

the cessation of the load point displacement. The pulse in 
normal stress, imposed 0.1 s after initiation of the hold, is 
identical to those imposed in the normal stress pulse tests, 
where the commanded duration of the pulse is 0.2 s. 

Dieterich [1981] performed analogous tests in which the 
normal stress remained constant during the experiment. Our 
tests conducted with zero-amplitude normal stress pulse are 
identical to Dieterich's so-called "hold tests." As we have 

shown, a pulse in normal stress yields a value of state 00 that 
is different from 0 ss. Likewise, in a hold-pulse test the 
evolution of 0 that occurs following the pulse in normal 
stress, but during the load point hold, begins from the 
non-steady-state value, 00, resulting from the pulse. Conse- 
quently, the hold-pulse experiment severely tests both the 
normal stress term as well as the slip rate term of the general 
evolution law given by equation (14). 

Figure 10 compares simulations and data for three hold- 
pulse tests, each with the duration of the load point hold 
equal to 1 s. In the first test the normal stress is held 
constant, while in the second and third tests the normal 
stress is pulsed by 20% and by 40% above 5 MPa, respec- 
tively. The constitutive parameters used in the simulations, 
and listed in Table 1, are those that simultaneously best 
represent all of our experiments, namely, velocity steps, 
normal stress steps, normal stress pulses, and hold-pulse 
tests. As seen in the figure, the pulse in normal stress 
produces a spike in shear stress that is equivalent to those 
that occur in the normal stress pulse test and which result 
from the previously described coupling of shear stress to 
normal stress. Next, the shear stress relaxes during the hold 
as the slider continues to move, at rates that decrease with 
time. Upon resumption of displacement of the load point, the 
shear stress passes through a transient peak, A•-, as defined 
in the figure. For the 1-s holds, the effect of the pulse in 
normal stress is to increase A•-by an amount that increases 
with the amplitude of the pulse. 

The results of our hold-pulse experiments and the corre- 
sponding simulations are summarized in Figure 11, where A•- 
is plotted for the three pulse amplitudes 0%, 20%, and 40% 
of 5 MPa and hold times of 0.1 to 10,000 s. Our data from 
zero-amplitude normal stress pulses reveal the same general 
features seen in previous hold tests [see Dieterich, 1981, 
Figure 10]. In particular, for long hold times, A•-increases 
approximately linearly with the logarithm of the duration of 
the hold. According to the constitutive law, 0 increases 
during the hold while the slider creeps and the load relaxes. 
At the end of the hold period, 0 has obtained a value that 
exceeds 0 •'s = D•./V, where V is the nominal slip speed. It 



4936 LINKER AND DIETERICH: EFFECTS OF VARIABLE NORMAL STRESS 

1 SECOND HOLD 

No Pulse 20% Pulse 40% Pulse 
_ 

EvolulJon Law I 

Evolution Law 2 

DISPLACEMENT, 20 pm / division 
Fig. 10. Data and simulations of hold-pulse tests with l-s holds. In hold-pulse tests, the load point is stopped for 

a measured duration before displacement is resumed at the initial rate of I /xm/s. At 0.1 s into the load point hold, the 
normal stress is pulsed, exactly as in the pulse tests. Upon the resumption of sliding, the shear stress rises through a 
transient of amplitude A•-. The simulations use evolution laws I and 2 and the parameter values listed in Table 1. 

is this increase in 0 that results in the observed transient 

increase in shear stress, 
The introduction of a normal stress pulse during a load 

point hold can be examined, again by studying Figure 11. 

For the shorter hold times the effect of a normal stress pulse 
is to increase the height of the friction transient, /x•-, by an 
amount that is relatively insensitive to the duration of the 
hold. In the limiting case of no load point hold, a hold-pulse 
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Fig. 11. The shear stress transient that results from the hold-pulse tests is plotted versus the logarithm of the 

duration of the hold. Data from pulses of 0, 20, and 40% of 5 MPa are shown by boxes, diamonds, and circles, 
respectively. The curves represent simulations of hold-pulse tests using (a) evolution law I and (b) evolution law 2 and 
the parameter values listed in Table 1. 
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test is equivalent to a normal stress pulse test. Thus accord- 
ing to our proposed model the variation of Ar with pulse 
amplitude, as plotted near the left edge of the figure, is 
determined primarily by the value of a. At long hold times 
the effect of the pulse is less pronounced and Ar again 
increases in approximate proportion to the logarithm of the 
hold time. 

The curves plotted in Figure 1 l a and llb represent 
simulations of hold-pulse tests employing evolution law 1 
and evolution law 2, respectively. The model parameters 
are, again, those listed in Table 1 and are those that best 
represent the data from all of our tests. As can be seen in the 
figure, both evolution laws give general qualitative agree- 
ment with the data. That is, both reveal that at short hold 
times Ar increases with the amplitude of the pulse in normal 
stress, and Ar is relatively insensitive to the duration of the 
hold. In addition, at long hold times, Ar increases approxi- 
mately linearly with the logarithm of the duration of the hold. 
In detail, however, neither set of model predictions agree 
with the data. For example, at long hold times, the simula- 
tions using evolution law 1 overpredict the rate of increase of 
Ar as a function of hold time. Likewise, the simulations 
using evolution law 2 produce curves that appear to be 
shifted to the right relative to the data. 

In analyzing the data from his hold tests, Dieterich [1981] 
performed numerical simulations employing the same evo- 
lution laws that we have adopted here, but for the special 
case of constant normal stress, and noted similar discrepan- 
cies between his model and the data. The principal discrep- 
ancies between the simulations and the data can be associ- 

ated with two of the parameters in the model, namely, B and 
D c. In Figure 11 a the slope of the curves at long hold times 
is determined by the value of B. In Figure 11 b the horizontal 
position of the bend in the curves is determined by the value 
of D c. Therefore one way around these discrepancies would 
be to choose values of B and Dc that produce curves in 
Figures 11 a and 11 b that match the hold-pulse data. Instead, 
we have chosen to consider all of our data in constraining the 
values of the parameters used in the simulation rather than 
adopting different parameter values for each different exper- 
iment. In particular, the values of both B and D c are 
constrained by the data from the velocity stepping tests. The 
parameter B represents the amplitude of the decay in shear 
stress that follows a change in slip speed, while D c repre- 
sents the characteristic displacement of the decay in shear 
stress following the velocity step (Figure 2). To match the 
current model to the hold-pulse data in Figure 1 l a would 
require the adoption of a value of B less than the value that 
is consistent with the velocity step data by about a factor of 
2. Likewise, to match the current model to the hold-pulse 
data in Figure 11 b would require the adoption of a value of 
D c less than the value that is consistent with the velocity 
step data by about a factor of 5. 

An alternative resolution to the discrepancies between the 
model predictions and the hold-pulse data is to include a 
second state variable that obeys the previously employed 
evolution laws but operates over a different characteristic 
displacement. By including a second state variable in this 
manner, one introduces two additional parameters into the 
model. Instead of one value of Dc and one value of B, two 
characteristic displacements and two values of B, each 
associated with a particular value of Do, are included. The 
incorporation of two characteristic displacements is sup- 

ported by the shape of the decay curves from the velocity 
stepping tests (Figure 2). In detail, those decay curves show 
a rapidly evolving transient that immediately follows the step 
in slip speed, indicative of a small Do, while at the larger 
displacements, there is a persistent slow change of shear 
stress characteristic of large Dc. Other workers have, in 
fact, argued that the data from their velocity stepping tests 
require two characteristic displacements [Ruina, 1980, 1983; 
Weeks and Tullis, 1985; Tullis and Weeks, 1986]. In princi- 
ple, by choosing the appropriate values of the Bi, whose sum 
now represents the amplitude of the decay in shear stress 
that follows a change in slip speed, and the appropriate 
values of Dc one could match the data from the hold-pulse 
tests in Figures 1 l a and 1 lb while still satisfying the data 
from the velocity stepping tests. We have chosen not to 
include this degree of complexity, or perhaps refinement, in 
our model. 

7. DISCUSSION 

We have observed that normal stress history significantly 
affects the coefficient of friction for one rock type at one 
normal stress and one slip rate, specifically Westerly granite 
at a normal stress of 5 MPa and a slip rate of 1 •m/s. 
However, the work of previous investigators, while not 
duplicating our experiments, does indicate the same general 
features that we have observed in our normal stress stepping 
tests and suggests some general validity of our proposed 
constitutive law. For example, the experiments of Hobbs 
and Brady [1985] were conducted on gabbro, the experi- 
ments of Locknet et al. [1986] were conducted on Westerly 
granite with a layer of gouge, and the experiments of Olsson 
[1988] were conducted on welded tuff. Lockner et al.'s 
experiments were performed at a normal stress of 50 MPa, 
while those of Olsson were performed at 2 to 6 MPa. We are 
encouraged that the state variable formulation not only 
appears to apply to a wide range of rock types at constant 
normal stress, but also that the effects of variable normal 
stress appear to be characterized by our proposed model. 

The data that we have presented represent the variation in 
the resistance to sliding that results from relatively small 
changes in normal stress. We suspect that for sufficiently 
large changes in normal stress, the effects on 0, as outlined 
here, may saturate. A saturation effect could be incorporated 
into our model by the inclusion of suitable cutoff parameters 
[see Dieterich, 1979a, 1981; Okubo and Dieterich, 1986]. 
We also recognize that the steady state coefficient of friction 
may have a weak dependence on normal stress [Byerlee, 
1978] that is not included in our model. 

As discussed in the introduction, our results may have 
application when considering other laboratory experiments 
or faults in nature where normal stresses are generally not 
constant. Because normal stress effects can mimic slip rate 
effects, the interpretation of laboratory data can be compli- 
cated. We have addressed this complication by performing 
numerical simulations that attempt to characterize the inter- 
action of our testing machine and the specimen. Similar 
numerical simulations could also be performed for other 
experimental configurations, though the characterization of 
other apparatus may be more complicated than for the 
double direct shear apparatus and thus less well constrained. 

Olsson [1988], for example, performed tests in which the 
normal stress was increased at a constant rate while load 
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point speed was held constant. We have not performed 
normal stress ramping experiments, nor have we performed 
such simulations, but we expect that our proposed constitu- 
tive model could adequately simulate most of the effects 
reported by Olsson. We suggest that such simulations be 
performed in the future. 

Perhaps the most important question regarding the effects 
of variable normal stress is how they may affect the stability 
of a frictional system. Under conditions of constant normal 
stress, instability is promoted by large B - A, small D•,, and 
low stiffness [Dieterich, 1978; Ruina, 1980, 1983; Rice and 
Ruina, 1983; Gu et al., 1984]. There is no doubt that 
decreases in normal stress also promote instability, and our 
data indicate that the onset of instability will be influenced 
through the effect of normal stress on 0. For example, in 
response to a sudden decrease in normal stress, the shear 
strength drops suddenly by an amount that is controlled by 
the parameter a and then continues to decrease toward the 
new steady state shear stress as sliding proceeds. Thus we 
may conclude that the parameter a will influence stability. 
Stability analyses that investigate the effects of both variable 
normal stress and variable slip rate, as incorporated by our 
model, are planned. 

Olsson [1988] presented a constitutive law based on clas- 
sical viscoelasticity with a hereditary integral to accompany 
the data from his variable normal stress experiments. In 
contrast to the constitutive law that we have proposed, his 
law does not include a weakening distance, and so it is 
unlikely to be capable of reproducing all of the effects that 
we have observed. This assertion should be tested in future 

work. 

The effects of variable normal stress in the Earth could be 

incorporated in many analyses by utilizing our model. One 
area of study is given by large-scale faulting where normal 
stress will vary because of nonplanar fault geometry, en 
echelon steps, and slip on adjacent faults. A particular 
example, which we mentioned in the introduction, is the 
effort to understand how the stress changes associated with 
the May 1983 Coalinga earthquake were related to the 
observed changes in creep rate along the San Andreas fault 
[Mavko et al., 1985]. In spite of the fact that the calculated 
coseismic changes in normal traction on the San Andreas 
fault exceeded the changes in shear traction by at least a 
factor of 2, Simpson et al. [1988] developed a model in which 
the shallow region of the fault zone responds only to changes 
in shear stress. Their model produced changes in creep rates 
of the correct sense, but not of the correct magnitude. We 
expect that a model that is sensitive not only to changes in 
shear stress but also to changes in normal stress might 
provide additional insight into how the San Andreas fault 
responds to sudden changes in stress such as that imposed 
by the Coalinga earthquake. 

8. CONCLUSIONS 

1. A sudden change in normal stress results in both a 
sudden and a transient change in the resistance to sliding. 

2. The coefficient of friction depends on slip speed and a 
parameter representing the state of the sliding surface. The 
state of the sliding surface depends both on prior slip speed 
and on prior normal stress. 

3. The functional dependence of state on normal stress 
can be expressed in terms of the same state variable, 0, 

previously used to represent slip rate history effects. The 
variable 0 has the interpretation of effective contact time. 
We assume that the steady state value of 0 is independent of 
normal stress and that 0 ss - D•./V. 

4. At constant slip speed and from an initial steady state, 
a sudden change in normal stress results in a sudden change 
in 0, followed by a gradual change in 0 toward 0 ss as sliding 
proceeds. 

5. The sudden change in 0 that results from a change in 
normal stress is determined by a newly identified parameter, 
which we call a. 

6. Stability will be influenced by B - A, stiffness, D•,, a, 
slip rate history, and normal stress history. 

APPENDIX A: ALTERNATIVE FORMULATION 

FOR THE CONSTITUTIVE LAW 

Here we present the constitutive relations representing the 
variation in friction that results from changes in slip rate and 
normal stress, equations (3)-(7) and (13)-(14), in terms of an 
alternate representation of state that was originally intro- 
duced by Ruina [1980, 1983] and later adopted by other 
workers. Instead of employing the state variable 0, Ruina 
defines a related state variable t9: 

19 = In (0/0'). (17) 

Substituting (17) into the constitutive law, equation (3), 
yields 

r = kr*o' + Ao' In (V/V*) + Brr19. (18) 

In some studies the term B has been absorbed into the 

definition of 19. 

Recall from (3) that 0* and V* are defined for steady state 
slip such that when V = V*, 0 ss - 0'. Hence from the 
definition of steady state, 0 ss -- D•./V, we must have that 

O* -= DdV*. (19) 

In terms of 19, evolution law 1 for slip at constant normal 
stress, equation (4), becomes 

• = const V • = const VD•. exp (19) Dc 
(20) 

At constant slip speed, (20) has the solution corresponding to 
(6): 

19 = In {-7-+ [exp (190)•--1 exp [(•0 - 5)/D•.]}, 
(21) 

V = const 

Substitution of (17) and (19) into evolution law 2, equation 
(5), yields 

const V rr = const 

=- 19+ In (22) 



LINKER AND DIETERICH: EFFECTS OF VARIABLE NORMAL STRESS 4939 

which has the constant slip speed solution corresponding to 
equation (7): 

= •+ In •+ (9 exp [(b - b)/D•.] (23) (9 In V V* 0 0 , 

V = const 

Rice and Tse [1986] have combined (18) and (22) to eliminate 
the explicit appearance of (9. 

In terms of (9, the change of state in response to a step 
change in normal stress from o.0 to o., equation (12), becomes 

(9 = (9o+•ln . 
Finally, the general evolution equation (14) is given by 

d(9 = d b - do'. 

o- = const 

(24) 

(25) 

With (9, the expressions for evolution law 2 are somewhat 
simplified; compare equations (5) and (7) with equations (22) 
and (23). 

APPENDIX B: PHYSICAL INTERPRETATION 

OF THE ALTERNATIVE STATE VARIABLE (9 

As discussed previously, 0 is, in general, proportional to 
the apparent age of load-supporting contacts [Dieterich, 
1979a]. Furthermore, if evolution law 1 is used, then 0 
equals the age of the contacts. Under conditions of constant 
normal stress, this definition of 0 has some benefit for 
earthquake applications because 0 is then equal to the 
elapsed time since the last earthquake slip, in the absence of 
subsequent fault creep. However, under conditions of vari- 
able normal stress, the interpretation of 0 as apparent age of 
contacts loses its simplicity. For example, from (14), in the 
absence of any slip, if normal stress increases sufficiently 
rapidly, then the apparent age of contacts will decrease with 
elapsed time. Alternatively, if normal stress decreases, then 
the apparent age of contacts will increase more rapidly than 
elapsed time. 

While 0 has been given a physical interpretation, (9 has 
not. However, according to (17), 0 and (9 apparently repre- 
sent the same physical process. We offer a brief interpreta- 
tion of ©, consistent with classical friction theory and 
paralleling the argument given by Dieterich [1979a] that 0 
represents the apparent age of the load-bearing contacts. We 
make the usual assumption that frictional strength is propor- 
tional to the real area of load-bearing contacts, as in the 
approach of Bowden and Tabor [1964]: 

r = p(V)a = [P0 + Pl In (V/V*)]a, (26) 

where a is contact area per unit area, which, in turn, is 
generally proportional to normal stress. For this discussion 
the shear strength coefficient p(V) has a slip rate dependence 
of the type given in (3) and in (26). If we assume that the 
mechanism for state-related changes in friction involves 
changes in contact area due to time-dependent asperity 
creep [Dieterich and Conrad, 1984], then 

a = a i + a o, (27) 

where a i is the elastic component of contact area and a o is 
the portion of the contact area resulting from time-dependent 
creep. Substituting (27) into (26) gives 

r -- aip 0 + aip I In (V/V*) + aoPo + aOPl In (V/V*). 
(28) 

Since the rate- and state-dependent variations in frictional 
strength are small in relation to the nominal frictional 
strength, the term aopl In (V/V*) is of second order. 
Dropping this term in (28), the three remaining terms corre- 
spond, term by term, to those in (18) with 

tx * o' = aiPo, 

Ao' In (V/V*)= aip I In (V/V*), (29) 

Bo'(9 = aopo. 

Hence (9 is interpreted to be linearly proportional to that 
fraction of the contact area associated with time-dependent 
creep. 

In summary, the state-dependent variation in the resis- 
tance to sliding that occurs in response to changes in slip rate 
and changes in normal stress can be described by either 
parameter, 0 or (9. Equation (17) gives the relationship 
between the two variables, 0 and (9, both of which can be 
interpreted to represent the time-dependent growth of the 
load-bearing contacts. The resistance to sliding is linearly 
proportional to the apparent contact area whose time- 
dependent part is linearly proportional to (9 and logarithmi- 
cally proportional to 0. 
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