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Abstract This study is to determine the detailed response of shear strength and other fault properties to
changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal
stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential
changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for
both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the
amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response
consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of
the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in
response to large step decreases in normal stress is well predicted using the shear resistance slip length
observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate
changes in strength occur in response to rapid changes in normal stress; these are manifested as an
immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a
rate-independent strength model. Collectively, the observations and model show that acceleration or
deceleration in response to normal stress change depends on the size of the change, the frictional
characteristics of the fault surface, and the elastic properties of the loading system.

1. Introduction

A long-held, simplifying assumption in seismology is that fault slip produces no change in on-fault normal
stress [e.g., Richards, 1976; Hardebeck and Hauksson, 2001]; this idea derives from simple fault models such
as a vertical, planar strike-slip fault in an elastically homogeneous material. While this idea has many merits,
all known natural faults have some degree of geometrical complexity and are embedded in heterogeneous
or anisotropic material surroundings with depth-varying ambient stresses and material properties.
Accordingly, fault slip induces some change in on-fault normal stress and potentially makes fault strength
during rupture propagation and arrest more spatially variable and time dependent than it otherwise would
be [e.g., Harris et al., 1991; Andrews and Ben-Zion, 1997; Bouchon and Streiff, 1997; Harris and Day, 1997].
Most often an Amontons friction assumption, shear resistance proportional to normal stress, is used to char-
acterize friction in simulations, and the effects of slip-induced changing normal stress are particularly
expected near bends and stepovers along the fault surface. Normal stress change may either clamp or
unclamp a fault, depending on the geometry, which makes the affected fault segment less or more favor-
able to rupture, respectively, as shown in dynamic models [Harris and Day, 1993; Kame et al., 2003; Bhat
et al., 2004; Duan and Oglesby, 2005; Oglesby, 2005; Lozos et al., 2011]. These models of propagation through
stepovers in an otherwise homogeneous, isotropic half-space are consistent with Wesnousky's [2006] analy-
sis of historical surface rupture traces, finding that two thirds of surface rupturing earthquakes terminate at
geometrical complexities in the previously mapped fault trace, while the remaining third indicate that rup-
ture propagates through complexity under some circumstances. In addition to geometrical complexity,
there are instances where material or stress heterogeneity is important in inducing normal stress change.
Two common circumstances are faults along a bimaterial interface that are dynamically clamped or
unclamped during rupture, which might lead to rupture directivity under particular circumstances
[Andrews and Ben-Zion, 1997; Harris and Day, 2005], and dip-slip faults where dynamic normal stress
changes are associated with propagation to the Earth’s surface. Generally, a detailed understanding of
how shear resistance responds to changes in normal stress is key in predicting near-fault ground motion
and evaluating whether or not rupture can propagate through particular zones of material and
geometrical complexity.
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Normal stress change is also important in earthquake triggering. Stress transfer from seismic and aseismic
fault slip to other faults in the surrounding region influences the occurrence of earthquakes; such triggered
seismicity makes up a significant fraction of earthquake catalogs. Near-field and far-field aftershocks are the
most commonly cited evidence for stress triggering though whether aftershocks are induced predominantly
in the near field by static or dynamic stress changes is debated [Felzer and Brodsky, 2006; Richards-Dinger
et al., 2010]. Evidence of very far field triggering by dynamic stresses is relatively rare but nonetheless well
documented [Hill, 2012]. Foreshock-main shock pairs also are widely thought to be related through stress
transfer. Implicit in stress triggering are fault normal stress changes, though these are mostly treated very
approximately, even significantly discounted in static stress triggering studies through choice of a low effec-
tive friction coefficient [e.g., Stein, 1999]. Only recently have laboratory-based representations of the response
of faults to normal stress change been incorporated into stress triggering and earthquake seismicity rate cal-
culations [Dieterich, 2007; Fang et al., 2011].

Unfortunately, experimental studies of how fault strength responds to changes in normal stress are not in
uniform agreement. The early studies were on bare rock surfaces [Hobbs and Brady, 1985; Olsson, 1988;
Linker and Dieterich, 1992]. All of these tests at room temperature involved rapid changes in normal stress
imposed on a fault slipping initially at a constant rate. While the results are not identical, they all conclude that
the frictional response to a step change in normal stress is a multistage process. Hobbs and Brady’s [1985]
experiments on gabbro produced a response curve that included a large instantaneous shear stress response,
followed by an exponential time-dependent evolution to steady state. Olsson [1988] tests on welded tuff pro-
duced an immediate steep linear response, followed by a time- or slip-dependent exponential evolution.

Linker and Dieterich [1992] is the most detailed of these studies. Their experiments on Westerly granite using a
double direct shear apparatus (DDS) showed a three-stage shear stress response following a normal stress
increase (Figure 1a). The first stage is an instantaneous increase in shear stress; this is a machine effect in
which shear stress changes with normal stress due to elastic strain of the samples or slight misalignment
of the sample and loading frames. This is followed by an immediate increase in shear stress that is linear in
time or load point displacement. Linker and Dieterich’s interpretation is that in this stage the sudden increase
in normal stress increases the contact area on the fault surface, which causes an immediate increase in the
fault strength. As a result, the fault’s slip rate immediately decreases and the measured shear stress rises lin-
early with time as load point displacement rate exceeds the fault slip rate, such that the linear slope is the
product of the testing machine stiffness and the loading rate. This second stage is the largest part of the fault
response. The final stage is a gradual, approximately exponential in load point displacement, increase in
shear stress toward a steady state value. Following Linker and Dieterich [1992] nearly exactly in experimental
approach, Hong and Marone [2005] conducted experiments on quartz gouge rather than bare rock surfaces.
They also found a three-stage frictional response, though their published data have been corrected for the
machine response stage (Figure 1b). Their interpretation is identical to Linker and Dieterich’s [1992], and they
also find that the immediate shear stress increase is a larger part of the overall frictional response than the
gradual exponential evolution to steady state.

Linker and Dieterich [1992] developed constitutive relations that are intended to describe the empirically
observed two-stage response of the fault to changes in normal stress. These relations have been used to
determine the stability of slip on inclined faults in which shear stress and normal stress are coupled
[Dieterich and Linker, 1992] and in stress triggering studies [Dieterich, 2007; Fang et al., 2011]. It is important
to note, however, that these relations cannot be easily applied without modification in dimensioned simula-
tions of dynamic rupture, particularly in the case of slip between elastically dissimilar materials [Rice et al.,
2001; Ranjith and Rice, 2001]. Rice and coworkers found Linker and Dieterich's [1992] and all constitutive equa-
tions that allow an immediate change in shear resistance accompanying a normal stress change to be
unstable and to have no solution. If, instead, shear resistance evolves with time or displacement following
a change in normal stress, solutions can be obtained (see the original study for more details). To represent
the effects of normal stress changes on shear resistance, Rice and coworkers used an alternative relation of
Prakash [1998] that was based on experimental observations from shock loading experiments on engineering
materials, rather than rock.

Prakash [1998] conducted plate-impact experiments; this type of test inherently eliminates testing machine
response. Prakash [1998] inferred the shear stress on a sliding interface and found that it does not respond
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Figure 1. Normal stress steps in previous rock friction studies. (a) A 2 MPa step in normal stress on bare Westerly granite at
5 MPa initial normal stress and load point displacement rate of 1 um/s, figure from Linker and Dieterich [1992]. The open and
solid symbols mark the first two stages of the interpreted response (see text). (b) A 3 mm thick layer of quartz gouge at
25 MPa normal stress and load point displacement rate of 0.1 mm/s, figure from Hong and Marone [2005]. The dashed curve
is data and the solid curve is a fit to the data using the two-stage Linker and Dieterich [1992] constitutive equations. (c) A
1 MPa step in normal stress on bare Westerly granite at 5 MPa initial normal stress and load point displacement rate of

1 um/s from Kilgore et al. [2012]. (d) Same data as in Figure 1c (red), plotted at an expanded horizontal scale. In blue is the
imposed change in normal stress (right axis). In black is an exponential fit to the shear stress (left axis) indicating a
continuous, nonlinear, monotonic, response (see section 4.2).

instantaneously to step changes in the applied normal stress but gradually evolves to a new steady state level
as a function of accumulated slip. Prakash’s [1998] tests were bimaterial interfaces of 4340 VAR steel or 6Al-4V
titanium alloy samples, sliding against tungsten carbide targets. The interface slip velocities at the time of the
normal stress change are extremely high at 1 to 30 m/s, as are the normal stresses, 500 to 3000 MPa. Because
of experimental technique and the high slip rates used, the normal stress change is applied to the surface by
an elastodynamic reflection, after the fault is already sliding at seismic or higher slip speeds, and thus, these
results are not easily extrapolated to the problems of earthquake triggering or rupture propagation through
geometric complexity. On the positive side, an important issue in application of experimental results to
earthquake triggering and rupture propagation is resolving the immediate response of fault strength to
changes in normal stress, requiring high data acquisition rates which for Prakash [1998] are not fully
documented but greatly exceed a megahertz, perhaps approaching 1 GHz. Thus, these experiments were
the first in which the immediate response of fault strength to changes in normal stress were examined at
high resolution.

Most recently, in an effort to reconcile the rock friction observations [Hobbs and Brady, 1985; Olsson, 1988;
Linker and Dieterich, 1992; Hong and Marone, 2005] with the constraints required by plausible physical models
of dynamic rupture [Rice et al., 2001; Ranjith and Rice, 2001], Kilgore et al. [2012] revisited the experimental
approach of Linker and Dieterich [1992], using the same sample materials, sample preparation, testing proce-
dures, and the very same testing machine but with two significant technical advances. First, through careful
alignment and some good fortune, Kilgore et al. [2012] were able to essentially entirely eliminate the machine
coupling between shear and normal stress in stress stepping experiments, thus removing the first stage in
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Linker and Dieterich’s [1992] and Hong and Marone's [2005] observed response that overprints the fault’s
intrinsic behavior. Second, through the use of higher-resolution and higher-speed digital records, Kilgore
et al. [2012] determined the immediate response of the shear resistance to changes in normal stress.
Nonetheless, Kilgore et al.'s [2012] results of the response of fault shear resistance to a step increase in normal
stress, if plotted at an equivalent time or displacement scale to the previous experiments of Linker and
Dieterich [1992] (compare Figures 1a and 1c) or Hong and Marone [2005] (compare Figures 1b and 1d), are
apparently identical. However, in detail (Figure 1d), the new study does not show the immediate linear
increase in shear stress that follows the normal stress increase, which underlies all of the previous rock friction
interpretations of the response. Instead, the evolution of shear stress is a gradual approach to steady state
with slip, much as suggested by Prakash [1998].

The present study is an expanded analysis and a more comprehensive consideration of the complete suite of
normal stress experiments that were in part described by Kilgore et al. [2012]. The expanded data set and ana-
lysis includes step decreases and increases in normal stress, the stability of slip following normal stress
decreases, and the effects of normal stress pulse tests on fault strength. As a practical matter, though this
is a study of friction, the dimensionless ratio of shear stress to normal stress, we typically will not examine
changes in friction itself. Rather, much of our attention is focused on changes in shear resistance (with units
of stress). This is because controlled changes in normal stress induce changes in friction that include both the
cause of the change (normal stress) and the response (shear resistance). In other words, to understand friction
in response to controlled changes in normal stress, it is easier to study the associated changes in shear resis-
tance than in friction itself. An additional point of clarification is because our experiments are conducted at
quasi-static conditions where inertial terms are negligible (see equation (B1a) in Appendix B below), we use
the terms “shear resistance,” “shear stress,” and “shear strength” interchangeably throughout this report.

Besides detailed observations of the change in fault shear resistance, in this study the changes in fault normal
closure and in the amplitude of small amplitude, high-frequency seismic waves transmitted across the fault
are used to constrain the physical processes that determine the shear resistance. The goal of this study is to
empirically establish the laboratory response of faults to changing normal stress and to develop a contact-
scale physical model that accounts for the observations. As described above, the response influences seismic
rupture arrest, earthquake initiation, and the estimates of the associated hazard. Determining the stability of
slip and the changes in slip speed induced by reductions in normal stress are the key experimental observa-
tions necessary to apply lab results to dynamic rupture and earthquake triggering. Accordingly, we utilize
laboratory observations to develop a conceptual model for physics-based earthquake initiation and rupture
simulation as normal stress varies.

2. Experimental Methods and Measurements

The experiments were conducted in a servo-controlled, DDS testing apparatus [Dieterich, 1978] (Figure 2). The
two faults of granite, consisting of side block surfaces measuring 5 cm x 5 cm and the 5 cm x 8 cm surfaces of
the center block, were hand lapped with #60 silicon carbide abrasive and water on a glass plate. The resultant
roughened surfaces were checked to be flat and parallel to within 0.025 mm. The apparatus permits servo
control of sliding speeds from 10™* um/s to 10% um/s and of normal stresses up to 150 MPa. In the primary
experiments the loading point slip rate is held constant at 1 pm/s and the normal stress is varied between 5
and 7 MPa. Slip rate and normal stress are controlled using a proportional-integral-derivative (PID) servo sys-
tem to minimize overshoot, drift, and oscillation of the control. The proportional circuit linearly amplifies the
error signal, the difference between a computer generated reference signal and the feedback signal from the
sensor monitoring the control variable. Additional analog circuits integrate the error over recent history and
take the derivative of the recent error signal. The controller uses a combination of the proportional, integral,
and derivative response to the error signal to drive the servo valves that control the flow of oil into and out of
the hydraulic cylinders which generate the normal and shear forces in the test apparatus.

2.1. Measurements

The primary experimental data are 16 bit digital records of the voltages from load cells measuring fault shear
stress, normal stress, and from displacement sensors measuring fault slip and fault normal displacement
across the interface. Data are saved at the rate of 100 pts/s (Hz). Each saved data point represents 10 data
points recorded at 1000 Hz, averaged in real time.
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Figure 2. The biaxial experimental geometry used, consisting of applied shear and normal forces. Shear and normal stress
are measured by load cells above and to the left, respectively, of the stress labels. Additional instrumentation includes a
slip sensor, acoustic transmitter/receiver, and a fault normal displacement sensor.

2.1.1. Stress

Normal stress is servo controlled using the output from the horizontal load cell. The shear stress is a passive
record of the vertical load cell output. The load cells are both 11,340 kg capacity. The nominal 5 MPa normal
stress in these tests is about 1275 kg force and shear force in these tests is between 1656 and 2313 kg.
Resolution of shear and normal stress are +0.2 and 0.4 kPa, respectively.

2.1.2. Fault Slip/Load Point Displacement

Fault slip is measured using a small Lion Precision C2-A capacitive sensor paired with their RD22 driver mod-
ules with a response rate DC to 20 kHz. The sensor and its target are mounted on opposite sides of one of the
faults in the DDS geometry. The slip sensor output resolution is +0.1 um. The servo-controlled system loading
the fault uses fault slip as the feedback signal to control fault slip rate. The near-fault measurement minimizes
compliance between the load point and the fault, thus maximizing the stiffness of the loading system. The
recorded values of fault slip are better considered as the load point displacement of the testing machine
and control system, including actual fault slip and a small amount of elastic distortion in the rock between
the sensor mounting points. Actual fault slip can be estimated from this load point displacement, the known
stiffness of the control system and the measured shear stress (see section 4.2).

2.1.3. Fault Normal Displacement

A displacement sensor, identical to the fault slip instrument, is mounted orthogonal to the fault surfaces to
measure fault normal displacement across one of the faults in the DDS geometry at a resolution of
+0.030 um. The fault normal displacement data have been corrected for linear compaction trend of
~0.001 um/um that results from wear of the fault surface or from misalignment of the sensor. The sensor
mounts for these measurements are positioned similar to the fault slip sensor mounts, but with 3 mm more
of cross fault distance between them. Accordingly, these measurements include more elastic distortion
within the bulk, than for the fault slip measurements. Where necessary these changes have been removed
from the measurements as follows. For a change in normal stress there is strain in the bulk of the same sense
as the strain across the interface; that is, for an increase in normal stress there is compressive strain in the bulk
and across the interface. The extraneous strain can be approximated by that resulting from a uniaxial stress
change. Similarly, in the direct shear geometry an increase in average shear stress at the interface is accom-
panied by an increase in thickness of the fault blocks as measured normal to the interface. This correction can
be approximated by the strain resulting from the Poisson effect of changing the loading stress. That is, we
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treat both the normal and shear loading effects separately as due to uniaxial loading. Doing so is likely a very
good approximation for the normal stress, as it is uniaxially applied. However, the shear stress is applied to
the top of the center block uniaxially but is supported below by the stationary side blocks and the resulting
stresses and strains due to this load are not uniform throughout the center and side blocks. Nonetheless, for
simplicity we treat the average contribution as being equivalent to a uniaxial load. Fortunately, the shear
stress is the smaller of the two corrections. In any case we believe the poorly known errors associated with
the shear stress correction do not affect the conclusions of this study. The combined correction to the mea-
sured normal displacement J,, is

Ly(oe —00) Lso(t — 170)

G =00 == - (1)

where L, and L; are the distances between the mounting points of normal (~14 mm) and shear (~11 mm)
transducers and targets, respectively, E is Young's modulus (36 GPa), and v is Poisson’s ratio (0.17) (values
at 5 MPa uniaxial stress are from Martin et al. [1990]). o, and 7, are arbitrarily chosen reference values of
normal and shear stress which are taken to be the measured values prior to the imposed normal stress
change. The corrections due to changes in normal stress in (1) are of the order of 0.39 um/MPa. This
bulk deformation of the samples in response to changes in normal stress, amplified by the distance
between the fault normal displacement sensor mounts, is about 27% of the observed fault normal com-
paction measurements. That percentage may seem overly large, but the 14 mm of bulk sample between
the sensor mounts can accommodate small, but measurable amounts of deformation compared to the
deformation that the tens of microns of topography of the fault surface roughness can accommodate.
The elastic distortions accompanying changes in shear stress are on the order of 0.05 um/MPa, around
4% of the compliance.

2.1.4. Transmitted Amplitude and Fault Normal Stiffness

A separate data acquisition system records fault normal incident waves transmitted across the faults. The
active seismic system uses a broadband P wave transducer with a central frequency of 1 MHz (Panametrics
V103RM). The transducer element is 0.5 inches across. A 20 V peak to peak 1 MHz, single-cycle sine wave
pulse is produced at the source transducer using a Tabor WW2572A waveform generator once every
0.01 s, resulting in an effectively continuously sampled record of the transmitted amplitude. After having
propagated across the faults, the wave is detected by a second, identical transducer. The received signal is
amplified and passed through a 300 kHz high-pass filter and a 5 MHz low-pass filter using a Panametrics
5800 Pulser/Receiver. The received sine wave pulses are digitized at the rate of 100 MHz with 14 bit
of resolution.

After the experiments are completed the recorded waves are processed to determine the time history of
transmitted amplitude. The relative amplitude of a wave transmitted across a single sliding surface, |T], in this
DDS geometry is

a,
IT| = /= (a)
do

[Nagata et al., 2008], where a; is the measured amplitude of the received sine wave pulse traversing the entire
sample assembly and ay is the amplitude of an identically sourced sine wave, traversing a single, solid block
of Westerly granite that is the same thickness as the sample assembly. The difference between equation (2a)
and the transmitted amplitude in an early study in this apparatus [Nagata et al., 2014, equation (3)] is due to
there being two fault surfaces in DDS and only one in the earlier study.

Since the acoustic waves are traveling elastic distortions, their transmitted amplitude is sensitive to the elastic
properties of the interface and the bulk. The fault is an interface of elastic contrast relative to the surrounding
material, having reflection and transmission coefficients commensurate with the magnitude of the contrast
[Kendall and Tabor, 1971; Schoenberg, 1980; Pyrak-Nolte et al., 1987, 1990]. The wavelength is large, ~5.5 mm,
relative to the asperity contacts on the fault that in part determine the interface stiffness. By treating the fault
as a displacement discontinuity, and attributing all the changes in transmitted amplitude to the contrast at
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the interface, wave propagation theory relates the relative amplitude T of the transmitted wave to interface
stiffness k as

PR (I (2b)

11
I

[Kendall and Tabor, 1971; Schoenberg, 1980; Pyrak-Nolte et al., 1987]. Here k is the specific interface stiffness, k=
is a constant kx = wpfi/2 where o is angular frequency of the wave (2 x 10%/s in our experiments), p is density
(2.63 g/cm? [Martin et al., 1990]), and p is the elastic wave propagation speed (5486 m/s [Martin et al., 1990]).
For our experiments in granite ks« is 45.47 MPa/um. At high frequencies k«/k » 1 and T is proportional to the
stiffness [Yoshioka and Iwasa, 2006]; nonetheless, we use the complete relation (2b) to convert normalized
amplitude to stiffness throughout.

2.2, Tests

Three types of tests were performed to determine the effects of normal stress change on fault strength, slid-
ing stability, fault dilatancy, and acoustic transmissivity across the fault: step increases, step decreases, and
pulse tests. Normal stress steps determine the response of the fault to static stress changes. The step
decreases establish the position of the sliding stability boundary. Transient step increases and decreases in
normal stress were also performed whose purpose was to investigate effects of transients as during natural
dynamic stress changes.

2.2.1. Step Increases

In the nominal step tests, increases in normal stress are imposed from a starting normal stress of 5 MPa, while
the load point displacement rate is 1 pm/s. The size of successive increases are increments of 1, 2,4, 5, 10, 20,
and 40% of the starting value, corresponding to changes of 0.05, 0.1, 0.2, 0.25, 0.5, 1, and 2 MPa. The change is
imposed as rapidly as possible without producing significant overshoot of the target normal stress. In
practice the duration of the imposed change is less than 0.17 s. Normal stress is held constant at the target
as the shear stress evolves to steady state. Successive step increases are separated by 100 pm of load point
displacement. Half of that displacement is at the previous target normal stress and the remainder is at the
starting value following a normal stress step decrease (see below). Additional step increases were conducted
at sliding rates of 0.5 and 5 pm/s to determine the relative roles of time and slip in the evolution of shear
strength and fault properties following a change in normal stress.

2.2.2. Step Decreases

The step decreases are of the same size as the increases, are at the same load point displacement rate of
1 um/s, and are interspersed with the increases. They are returns to the nominal normal stress of 5 MPa.
For purposes of control the decrease in normal stress is imposed somewhat more slowly than the increase.
Because the machine stiffness results from servo control and depends on resolving fault displacement, if
the normal stress is decreased too quickly, the control system is dynamically less stiff. In practice, the duration
of the imposed change occurs in less than 0.3 s. Normal stress is then held constant at the target as the shear
stress evolves to steady state. Successive step decreases are separated by 100 pm of load point displacement.
Half of that displacement is at nominal level and the remainder is at the previous step increase target
normal stress.

2.2.3. Pulse Tests

Like the step increases, the pulse tests are imposed from a starting normal stress of 5 MPa and load point dis-
placement rate of 1 pm/s. The size and succession of pulses are intended to be the same as for the step tests.
The normal stress increase is imposed over less than 0.07 s. Normal stress is then held approximately constant
for 0.2 s total duration and returned to the starting normal stress in around 0.1 s. Successive pulse tests are
separated by 50 um of load point displacement.

3. Experimental Results

For each of these tests (step increases, pulse tests, and step decreases) the observed changes in transmitted
amplitude, shear strength, and fault normal displacement are described in detail in the following subsections.
The static stress increases document a stable slip response, an increase in shear resistance, fault closure, and

KILGORE ET AL.

FRICTION UNDER VARIABLE NORMAL STRESS 7



@AG U Journal of Geophysical Research: Solid Earth 10.1002/2017JB014049

—— step to 7 MPa b) 5.0 _

—— stepto 6 MPa

—— step to 5.5 MPa

—— step to 5.25 MPa =
© step to 5.2 MPa =
< —— stepto 5.1 MPa &
< —— step to 5.05 MPa =
17 [}
o — 123
P I
@ &
© -
£ §
o £
z | »

1.0 1.5 2.0s 0.0 0.5 1.0 1.5 2.0s
time (s) d) time (s)
0.55 4 r

e

0.54 o —

0.53 4 —

0.52 4 -

0.51 4 -

A

0.50 | MV MwL~«~w/\t~'\/v‘wmfvﬂwvmwm—

ol ﬂ“WW g iy fl Y

Al

fault normal displacement (microns)

0.49 H

T, transmitted amplitude (dimensionless)

T T T T
0.0 0.5 1.0 15 2.0s 0.0 0.5 1.0 15 2.0s
time (s) time (s)

Figure 3. Scaled normal stress step increase data. Size of the stress change is indicated in the legend in Figure 3a and
the same color coding of the steps is used in Figures 3b-3d. (a) Normal stress. (b) Shear stress. (c) Fault normal
displacement, not corrected for displacement trend or for elastic coupling equation (1), see text. (d) Dimensionless
transmitted amplitude from equation (2a) with ap = 3.85 V.

an increase in fault normal stiffness. The pulse tests produce stable response of fault slip. Step decreases
show dilatancy, reduction in fault stiffness, and, depending on the size of the step, stable or unstable
responses of the shear stress, providing constraints on the location of the stability boundary.

3.1. Step Increases

Two sets of steps were conducted at the nominal sliding rate of 1 um/s; one complete suite of data from the
step increases are shown in Figure 3 after Kilgore et al. [2012]. The traces are color coded to indicate the size of
the stress step. For shear stress, fault normal displacement, and transmitted amplitude, the size of the
response scales systematically with the size of the imposed change in normal stress. The details of the
responses differ, however. Shear stress (Figure 3b) shows a prolonged evolution. In contrast, the fault normal
displacement response is nearly identical to the imposed change in normal stress and shows nearly no evo-
lution with displacement or time (Figure 3c). Transmitted amplitude (Figure 3d) shows a response that is
intermediate between the shear stress and fault normal displacement. Most of the response tracks the nor-
mal stress change immediately, but with a small amount of evolution with time. The evolution distance is
much shorter than that for shear stress.

3.2. Step Increases at Different Loading Rates

To distinguish whether the evolution of fault properties following a normal stress increase results from
time- or slip-dependent evolution, similar tests were conducted at lower and higher slip speeds
(Figures 4 and 5) [Kilgore et al., 2012]. Step increases and decreases were conducted on the same samples
at lower and higher load point displacement rates of 0.5 um/s and 5 um/s. One suite of step tests at the
lower rate increases are shown in Figure 4. In these tests the apparent evolution time for shear stress is
longer than in the tests at 1 um/s slip rate (compare with Figure 3b), consistent with the evolution being
due to slip rather than time. The same can be said for the evolution of transmitted amplitude which is
longer at the lower slip rate. One suite of step increases at 5 um/s is shown in Figure 5. Again,
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Figure 4. Scaled normal stress step increase data at loading velocity of 0.5 pm/s. Size of the stress change is indicated in the
legend in Figure 4a and the same color coding of the steps is used in Figures 4b and 4c. (a) Normal stress. (b) Shear stress.
(c) Dimensionless transmitted amplitude from equation (2a) with ap = 3.85 V.

consistent with slip evolution, shear stress and transmitted amplitude changed more rapidly with time at
this higher slip rate. Fault normal displacement was not recorded in any of the tests at the lower and
higher slip rates because the sensor was off-line. Superimposing the shear stress evolution during steps
from 5 MPa to 6 MPa at all three load point displacement rates versus load point displacement rather than
time (Figure 6a) shows the displacement length scale more clearly and indicates the response is
independent of the loading rate and governed by slip evolution. A similar plot of the evolution of
transmitted amplitude (Figure 6b) also lacks a dependence on loading rate and evolves with slip. Noting
that the displacement scale differs in Figures 6, transmitted amplitude changes with a much shorter
characteristic displacement than for the shear resistance.

3.3. Pulse Tests

Six sets of pulses were conducted; one complete suite of scaled experimental data is shown in Figure 7. In the
figure, as with step increases, the traces are color coded to indicate the size of the stress pulse. There are some
minor control issues during the duration of the pulse where ideally the normal stress would be held perfectly
constant. As is clear in Figure 7, there are slight decreases in the normal stress during this time. The responses
are mostly consistent with those observed for the step increases, namely, the size of the response scales sys-
tematically with the size of the imposed change in normal stress and the details of the responses differ. Keep
in mind that direct comparisons with the step tests are appropriate for the increasing stage of the pulse as
these start from the same initial condition as a step increase, but during the decreasing stage of the pulse
the fault is in a nonsteady state condition, unlike that for the step decreases.

Nonetheless, with a few exceptions shear stress (Figure 7b) shows the same slow response to the increase in
normal stress. A slow decrease follows the decrease in normal stress. The largest two pulses show evidence of
a more rapid decrease which may be due to accelerated slip, and the very largest pulse shows a nonmono-
tonic decay, possibly influenced by arrest of rapid slip by the control system but more likely due to unwanted
coupling of shear to normal stress such as seen in the earlier Linker and Dieterich [1992] study. Again, the fault
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Figure 5. Scaled normal stress step increase data at loading velocity of 5 pm/s. Size of the stress change is indicated in the
legend in Figure 5a and the same color coding of the steps is used in Figures 5b and 5c¢. (a) Normal stress. (b) Shear stress.
(c) Dimensionless transmitted amplitude from equation (2a) with ap = 3.85 V.

normal displacement response is nearly identical to the imposed change in normal stress (Figure 7c). Most of
the compaction that occurs during the normal stress increase is recovered in the stress decrease. There is a
relatively small offset of the baseline displacement for the largest pulses. Unlike the shear stress, there is no

clear change in the form of response as the size of the pulse is increased, notably no change for the very large
decreases where shear stress shows complications likely due to rapid changes in slip speed. As for the step

increases, the transmitted amplitude (Figure 7d) shows a response that is intermediate between the shear
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Figure 6. Comparison of the evolution of fault properties with slip. (a) Shear stress from loading rates of 0.5, 1, and 5 um/s
for normal stress steps of 1 MPa plotted versus load point displacement. (b) Transmitted amplitude for the same steps as

shown in Figure 6a.
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Figure 7. Scaled normal stress pulse test data. Size of the stress change is indicated in the legend in Figure 7a and the same
color coding of the steps is used in Figures 7b-7d. (a) Normal stress. (b) Shear stress. (c) Fault normal displacement, not
corrected for displacement trend or for elastic coupling equation (1), see text. (d) Dimensionless transmitted amplitude
from equation (2a) with A; =3.85V.

stress and fault normal displacement. Most of the response tracks the normal stress change immediately, but
with a small amount of evolution with displacement while the normal stress is briefly held approximately
constant. Then when the normal stress is decreased, most of the offset is recovered immediately.
Whatever transient response there is upon the normal stress decrease would seem to have a shorter time
or slip evolution distance than for the increase and shorter still than the shear stress.

3.4. Step Decreases

Two sets of step decreases were conducted; one complete suite of scaled experimental data is shown in
Figure 8. As in prior plots the traces are color coded to indicate the size of the stress step. Shear stress step
decreases of up to 0.5 MPa show a stable but rapid decrease in shear resistance (Figure 8b). The evolution
distance is much shorter than in step increases, at least in part due to slip acceleration accompanying the nor-
mal stress decrease. Steps of 1 MPa or larger are unstable. As for the step increases and pulse tests, the fault
normal displacement response is nearly identical to the imposed change in normal stress and shows little
evolution with displacement or time (Figure 8c). The transmitted amplitude during the smallest stable down
steps (Figure 8d) tracks the normal stress decrease directly with perhaps a small amount of evolution with
time. For the larger stable and the two unstable steps there is a rapid decrease and overshoot of the final
value by an amount that increases with the size of the down step.

4, Data Analysis and Physical Interpretation

Kilgore et al. [2012] presented an empirical interpretation of the same step increase data shown in Figure 3,
namely, that while there are rapid changes in fault zone properties with normal stress (transmitted amplitude
and closure), the shear resistance instead evolves gradually with displacement. Furthermore, because the
tests were done at higher resolution in the same machine and conditions as the prior study, in the remainder
of this study we assume that our empirical description supplants the two-stage shear stress response inferred
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from the experiments of Linker and Dieterich [1992]. Because those observations were the empirical
motivation for the two-stage rate and state constitutive relations developed by Linker and Dieterich [1992]
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Figure 9. Steady state changes in shear stress resulting from normal stress

step tests, here plotted versus the normal stress change. The slope of the

fit (dashed) is the friction coefficient, u = 0.63.

in which a parameter o is used to
scale instantaneous changes in fault
properties as normal stress is
changed [Linker and Dieterich, 1992],
and because our data provide no
such evidence, we will also not
discuss that constitutive model in
this report. This should not be
interpreted to imply that our data
preclude instantaneous changes in
fault strength or “state” as normal
stress is changed. Indeed, it is well
known that the Linker and Dieterich
[1992] constitutive model can
produce a gradual evolution of
shear stress while state changes
instantaneously with normal stress
[Bhattacharya et al., 2016].

These issues with existing constitu-
tive relations are beyond the scope
of this study. In the following section
we further analyze the step increase,
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of dimensionless stress.

and also the step decrease and pulse test data to develop a physical interpretation of the response of faults to
normal stress changes. The analysis initially expands upon the step data, first using the changes in the steady
state conditions and then the transient changes. The pulse data and step decreases are subsequently used to

further confirm or deny and refine the interpretation.

4.1. Steady State Response

The ratio of the net, steady state change in shear stress with normal stress during frictional sliding is the fric-
tion coefficient, which is shown in Figure 9, well defined to be 0.63 by the collective step increases and
decreases, open symbols and crosses, respectively, in the figure. These values result from differencing the
average shear and normal stress in the quarter second prior to the stress step and the average once the shear
stress has reached steady state, the value between 18 and 20 s following the step. These same choices are
used consistently for transmitted closure and amplitude in the analogous Figures 10 and 11.
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Figure 11. Steady state elastic properties of the fault from p wave transmission. (a) Change in transmitted amplitude versus
normal stress change. Dashed line is a fit with slope 0.023/MPa. (b) Inferred specific fault normal stiffness from the
transmitted amplitudes, equation (2b), versus normal stress. Dashed curve is a power law fit to the data with equation (4)
and o9 =5 MPa, kg = 25.14 MPa/pm, and n = 0.39.
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The steady state closure measurements (Figure 10a) demonstrate the fault normal deformation associated
with step changes in normal stress. The figure shows the response to step increases with (open circles)
and without (open triangles) the stress correction, equation (1). There is some hysteresis between those mea-
surements and the step decreases (plus signs and crosses). Despite the complication and the uncertainty
associated with the stress correction, at least over the narrow, 2 MPa range of normal stresses considered,
the steady state closure is approximately linear in normal stress. Not knowing at this stage in the analysis
what processes are involved in determining closure, the following discussion considers possible interpreta-
tions of these data as linear and nonlinear dependences on normal stress, and physical models for these
dependences. An approximately linear relation between fault normal stress and fault closure is expected
under many circumstances. For example, the ratio of normal stress change to closure, the inverse of the slope
in Figure 1043, is the static fault normal stiffness. Were all the deformation linearly elastic, the fault normal
displacement versus normal stress data would resemble Figure 10a. Similarly allowing for some inelastic
deformation, taking the shear stiffness of the interface ks = dz/dd,, the friction coefficient u = dz/do,,, and
the dilation coefficient D = do,/dd; [e.g., Sleep, 1997, 2006] to all be constants, then the slope in Figure 10a
would be the constant, uD/ks.

A more likely expectation from elasticity is that the deformation occurs preferentially in the region of asperity
contacts leading to a nonlinear dependence of closure on normal stress [e.g., Nagata et al., 2014]. For an ana-
log material and larger (nearly zeroth order) relative changes in normal stress, the relationship between clo-
sure and normal stress is semilogarithmic [Nagata et al., 2014]. Figure 10b shows our granite data versus the
natural logarithm of normal stress, and it is also consistent with the Nagata et al. [2014] interpretation.
Observational data [Goodman, 1976; Brown and Scholz, 1985] and theoretical arguments from elastic models
of rough surfaces in contact based on Greenwood and Williamson [1966] [Brown and Scholz, 1985; Yoshioka,
1994] suggest generally that fault normal displacement depends logarithmically on normal stress, indepen-
dent of the details of the contact-scale elastic interactions. The standard explanation for this is from
Greenwood and Williamson [1966] who suggested that the distribution of asperity heights in contact on a fric-
tional surface at any given load can be well approximated by an exponential function. This holds for many
natural and laboratory rock surfaces [Walsh and Grosenbaugh, 1979; Swan, 1983; Power and Tullis, 1992].
Following these prior studies, the exponential height distribution leads to the same relation between normal
displacement and normal stress, independent of the details of the elastic asperity compliance [Beeler and
Hickman, 2001], the logarithmic variation

0n =060 +cinZ2 @3)
(0]

Here d; is the fault normal displacement at the reference normal stress ay. In Figure 10b Ad,, is 6,, — dp, where
the reference is taken at the starting normal stress of 6, =5 MPa in all the tests. In addition to being consistent
with the observed relation between closure and normal stress (Figure 10b), equation (3) is the empirical rela-
tionship often used to relate normal stress to elastic joint normal displacement [Goodman, 1976]. The physi-
cal explanation of (3) for rough surfaces in contact is as follows: as normal stress is increased, the separation
between the surfaces decreases resulting in increased strain at each contact, as graphically demonstrated in
Figure 6a of Dieterich and Kilgore [1994]. In addition, other asperities come into contact as the separation
decreases. Thus, for an increase in normal stress there are changes in the area of contact due to two effects:
increase in area of the existing contacts and increase due to new contacts being created as fault closes. As
shown in Greenwood and Williamson [1966] the elastic resistance to normal displacement arises primarily
from the latter effect (the changing number of asperities in contact) that is controlled by the statistics of
the asperity population, rather than the details of the elastic behavior of the asperities themselves. This is
our favored interpretation, and we will return to the physical basis of closure when we consider the transient
measurements. Nonetheless, these data clearly do not distinguish between logarithmic (Figure 10b) and lin-
ear (Figure 10a) dependence on normal stress, and this is an important issue for extrapolation to natural faults
that should be resolved in subsequent studies conducted over a wider range of normal stress.

The change in transmitted amplitude is approximately linear in normal stress change over the narrow range
of the measurements (Figure 11a). At step changes of less than 0.1 MPa, the relation is not well resolved for
the step increases. This is due to a signal to noise limit in the transmitted amplitude measurements. The
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overall regression indicates a weak dependence on normal stress, 0.023/MPa. There are some expectations
for a linear relationship between transmitted amplitude and normal stress. For example, from equation (2b)
at high frequency the transmitted amplitude and specific fault normal stiffness are proportional, while the
static fault normal stiffness (the reciprocal of the derivative of (3) with respect to normal stress) from the
rough surface contact model discussed above is proportional to normal stress [Nagata et al., 2014]. In detail,
however, the stiffness inferred from the measurements of transmitted amplitude and that implied by the sta-
tic closure measurements are quite different. The linear stiffness defined by the static measurements is
approximately 0.7 MPa/um (Figure 10a), whereas the inferred interface stiffness for granite is much higher
(see below). This discrepancy could relate to the differences in measurement method and frequency, but
its origin is not known, and an explicit theory that relates closure and transmitted amplitude measures
remains to be developed.

Nonetheless, of more relevance to the physics of friction is the relation between the transmitted amplitude
and contact area. Theory suggests some kind of nonlinear relationship, for example, Kendall and Tabor [1971],
where stiffness is proportional to the square root of contact area [also see Balik and Thompson, 1984]. Support
for this requirement can be illustrated for our data set by converting the transmitted amplitude to fault nor-
mal stiffness using equation (2b) and plotting the result against normal stress, that is, using normal stress as a
proxy for contact area (Figure 11b). Noting that at zero normal stress contact area and fault stiffness should
both approach zero (zero contact, infinite compliance), the observations diverge significantly from a linear
relation that includes the origin. Shown for reference is a simple power law fit,

kn = ko (Z—O> , (4)

that is qualitatively consistent with the requirement of nonlinearity. In (4) k, is the static normal stiffness at
the reference normal stress o. In Figure 11b, 6o = 5 MPa, n = 0.39, and k, = 25.14 MPa/um.

For friction the increase in steady state shear resistance with normal stress during sliding is well understood
to result from an increase in contact area, due either to contact-scale yielding [Bowden and Tabor, 1950] or
elasticity [Greenwood and Williamson, 1966]. The contact area increase has been shown quantitatively for
transparent minerals and an analog material, lucite, over this range of normal stress in this apparatus at room
temperature [Dieterich and Kilgore, 1994, 1996]. The change in shear strength with normal stress also implies
elastic or inelastic normal strain between the fault surfaces as the normal stress is changed. This is another
standard expectation from classic studies of brittle deformation and frictional sliding [Brace et al., 1966;
Escartin et al., 1997, 2008], namely, that frictional slip requires dilatancy. Accordingly, the increasing steady
state shear resistance with normal stress is the signature of an increase in volumetric or fault normal work
done against the confining stresses, necessary to allow shear deformation. And the changes in contact
area imply changes in the fault normal stiffness. Thus, each of the steady state changes in shear strength
(Figure 9), fault normal displacement (Figure 10), and fault normal stiffness (Figure 11) with normal stress
change are consistent with reversible changes in contact area, as expected from theory [Bowden and
Tabor, 1950; Greenwood and Williamson, 1966]. Accordingly, it is nearly uniformly agreed that during frictional
sliding the steady state shear resistance is proportional to the fractional contact area A

TxA (5)

[e.g., Dieterich, 1979].

4.2, Transient Response

Equation (5) has been widely applied to nonsteady state conditions and underlies nearly all applications of
laboratory rock friction to faulting and earthquakes (rate and state friction [Dieterich, 1979; Ruina, 1983;
Nakatani, 2001; Nagata et al., 2012]). Indeed, contributions of contact area are the basis of both of the promi-
nent constitutive models of friction under variable normal stress [Linker and Dieterich, 1992; Prakash, 1998]. In
the Linker and Dieterich model, rapid changes in normal stress induce immediate changes in contact area,
therefore in state [Linker and Dieterich, 1992] and, in some model implementations, very large changes in
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Figure 12. Transient fault normal displacement. (a) Records of normal displa-
cement versus normal stress in the first 2 s following step increases in normal
stress. The fault normal displacement records consist of two stages: a large
immediate, linear response labeled J; for the step between 5 and 7 MPa
(purple), followed by a very small transient labeled J;. The noise level on the
displacement during sliding at state-state is labeled n.l. The noise is defined
as the maximum and minimum recorded values between 1.75 and 2 s. This
level is essentially the same for all steps. (b) Reduced values of total,
immediate, and transient response for the cases shown in Figure 12a, here
plotted versus natural logarithm of the target normal stress. (c) Same as
Figure 12a but for step decreases in normal stress.

slip speed. Similarly in Prakash’s
interpretation, though his observa-
tions indicate that rapid changes in
normal stress do not produce large
immediate changes in slip speed,
the observed gradual change in
shear resistance with slip is inter-
preted as resulting from an underly-
ing gradual change in contact area
[Prakash, 1998]. In contrast to these
prior data and interpretations, and
as detailed in the following analysis,
the most straightforward interpreta-
tion of the transient response to
changes in normal stress in the
present study, is that they preclude
the strict physical interpretations of
Prakash and Linker and Dieterich,
though aspects of both are involved.
In this section we first describe the
transient response of fault normal
displacement, transmitted ampli-
tude, and shear stress and then dis-
cuss their constraints on physical
models of fault properties.

To illustrate the transient response to
changes in normal stress, normal dis-
placement, transmitted amplitude,
and shear stress from the normal
stress step increases (Figures 3¢, 3d,
and 3b) are replotted versus normal
stress rather than time. In the cases
of normal displacement and trans-
mitted amplitude the responses can
be divided empirically into two
stages. For example, Figure 12a
shows the step changes in fault nor-
mal displacement, using the same
color coding as in the original figure,
a convention that is adhered to
throughout. These are records of nor-
mal displacement versus normal
stress in the first 2 s following the
step for the seven-step increases in
normal stress. To illustrate the data
reduction and definition of the two
stages, there is a large intermediate,
linear response labeled d; for the step
between 5 and 7 MPa (purple), fol-
lowed by a very small transient
labeled d;. To quantify the sizes of
each contribution, for each step the
displacement from the onset to the
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Figure 13. Transient transmitted amplitude. (a) Records of transmitted amplitude versus normal stress in the first 2 s fol-
lowing step increases in normal stress. The records consist of two stages: a large immediate response labeled T; for the
step between 5 and 7 MPa (purple), followed by a smaller transient labeled T;. (b) Reduced values of total, immediate, and
transient response for the cases shown in Figure 13a, here plotted versus the target normal stress.

abrupt change in slope is measured as d; and from that point to the steady state value is ;. The total closure is
defined by the average between 1.75 and 2 s since the onset, as indicated by the schematic definitions on the
figure. The approximate noise amplitude is also labeled n.l. on the figure. Values of the immediate and
transient responses are shown in Figure 12b along with the total amount of closure associated with each
step. Reference lines are fits to the data. Approximately 94% of the fault normal displacement is
immediate. Normal displacement in response to the step decreases in stress is more complicated
(Figure 12c). Similarities are that the initial expansion associated with step decreases is linear and has the
same slope as for the step increases; the largest step increase in Figure 12a is shown for reference in
Figure 12c. A reasonable interpretation is that the immediate normal displacement ¢; is elastic
displacement, as seems to be required by its association with the rapid change in stress and its
reversibility. The principal complication in the step decreases is a deviation from the well-defined two
stage response for the two largest steps. Because rapidly accelerating slip and instability is associated with
these steps, the deviation is expected based on prior studies of rate dependent dilatancy [Marone et al.,
1990; Marone and Kilgore, 1993]. That is, so long as the slip rate during the step increases remains close to
the load point displacement rate, the two-stage response to rapid normal stress changes can be
interpreted as an elastic normal stress-dependent and slip rate-independent effect followed by inelastic
contribution controlled by a process that depends both on normal stress and slip rate, for example, plastic
yielding at asperity contact on a sliding surface [Scholz and Engelder, 1976]. For step decreases in which
the slip rate accelerates significantly the two effects will be superimposed rather than apparently sequential.

The transient behavior of transmitted amplitude (Figures 13a and 13b) is qualitatively similar to fault nor-
mal displacement, a two-stage response, and we use the same scheme to define the immediate and tran-
sient responses. The majority of the signal is immediate, approximately 85% (Figure 13b). There are some
notable differences betweeen transmitted amplitude and normal displacement; in particular, the relation-
ship of transmitted amplitude with normal stress during the immediate response is distinctly nonlinear. It
is known empirically from prior experiments on transparent analog material, lucite plastic, that contact
area and fault normal displacement are not tracked linearly by transmitted amplitude during step changes
in normal stress [Nagata et al., 2014], so this may be a related example. Though the physical reason for
the nonlinearity is not known, nonlinear relations between contact area and stiffness are expected from
elastic contact and crack models [Kendall and Tabor, 1971; Balik and Thompson, 1984]. Another stronger
difference is the significant transient excursion and recovery in the transmitted amplitude during unstable
slip (Figures 8c and 8d) that is not present or is muted in fault normal displacement. Based on this com-
parison, we conclude that the immediate response in granite is elastic and that the smaller transient
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Figure 14. Transient shear stress. (a) Records of shear versus normal stress in the first 10 s following step increases in nor-
mal stress. The records consist of two stages: a small immediate response labeled z; for the step between 5 and 7 MPa
(purple), followed by a larger transient labeled z;. (b) Reduced values of total, immediate, and transient response for the
cases shown in Figure 14a, here plotted versus the target normal stress.

change is both normal stress and slip rate dependent, resulting from an inelastic process such as contact-
scale yielding.

In contrast, when the first 2 s of the shear stress responses are plotted in the same way as in Figures 12 and 13,
the immediate and transient responses show the opposite sense of the fault normal displacement and trans-
mitted amplitude, with a small immediate and larger transient response (Figure 14a). The contrast between
Figures 12/13 and 14 illustrates some of the inherent difficulties of interpreting the response to normal stress
changes that occur over some finite duration. For instance, while the simplest interpretation of the shear
stress time series in response to step increases (Figure 3) is that it follows a single continuous stage, in
Figure 14a the same data could instead be interpreted as a two-stage response consisting of a small immedi-
ate response followed by larger separate slower process. While that interpretation cannot be entirely ruled
out, such ambiguity is inevitable given the experimental limitation of rapid but not instantaneous changes
in stress. Keep in mind an additional difference between the shear stress response and those of fault normal
displacement and T. For shear stress the transient is prolonged; Figure 14a shows the first 2 s of the much
longer response, whereas fault normal displacement and transmitted amplitude have reached steady state
in 2 s. So after 2 s shear stress is well short of its final target. Measuring the full shear stress response, the
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Figure 15. Relations among shear stress (black), fractional contact area (red), transmitted amplitude (blue), and fault nor-
mal displacement (gray) in response to a 25% step change in normal stress (yellow) from the published study on lucite
friction [Nagata et al., 2014].
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Figure 16. Detailed response of a step increase (red) and decrease (black) of 0.2 MPa. (a) Normal stress. In this case the step
increase overshoots the target value and oscillates subsequently. In comparison to the typical step this is poorly controlled.
The down step is better behaved with typically slight overshoot and well-controlled recovery. (b) Shear stress. Asymmetry
in the response is probably influenced by nonconstant slip rate with a decrease in slip rate following normal stress increase
and an increase in slip rate for normal stress decrease. (c) Fault normal displacement. (d) Transmitted amplitude.

transient is 91% of the total change in shear stress (Figure 14b). Despite there being a small amount of
immediate change in shear stress, our favored interpretation is that shear strength follows a single-stage
response and that the ~9% change that occurs during the normal stress increases is simply an artifact of
the experimental technique in which normal stress changes are applied over a small but finite time.
During that short time some slip and therefore some slip-dependent strength change occurs.

4.2.1. Relation to Contact Area

Experimental data that show the relations among shear stress, fault normal displacement, transmitted ampli-
tude, and contact area during changes in normal stress are limited to exploratory experiments on the trans-
parent analog material and lucite plastic (aka acrylic or PMMA) by Nagata et al. [2014]. Here their summary
plot of the response of shear stress, normal displacement, transmitted amplitude [after Nagata et al.,
2012], and contact area [after Dieterich and Kilgore, 1994] for a 25% step in normal stress is reproduced as
Figure 15. Whereas transmitted amplitude and normal displacement show a large immediate response, con-
tact area shows a much smaller immediate response. Though these experiments indicate that during normal
stress change transmitted amplitude and fault closure cannot be used directly as proxies for contact area,
they suggest that a fault shear strength lags significantly behind nearly instantaneous changes in contact
area resulting from changes in the applied normal stress to that fault. They also show that transmitted
amplitude and fault normal displacement evolve over a similar slip length scale as contact area. Consistent
with those lucite results, our step changes in normal stress on granite sliding at steady state result in changes
normal displacement and transmitted amplitude that evolve over a similar length scale that is shorter than
for shear resistance. Furthermore, in our granite experiments fault normal displacement and transmitted
amplitude achieve steady state levels much more rapidly relative to shear resistance than for lucite. For these
reasons, throughout the remainder of this paper we assume that the steady state normal displacement and
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response to changes in normal
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§tress to a normal step increase (red) and decrease (black) of.0.1 MPa. This sistent with a two stage physical
is the smallest well-resolved step and, because of the small size, has the
smallest excursions from the control load point velocity of 1 um/s. (a) Time model of contact area change, the
history. (b) Estimated slip history. Slip is calculated from the known stiffness, gradual change in shear resistance
load point displacement, and the measured shear resistance (see text). independent of inferred contact
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area (Figures 3 and 16) does not
require a two-stage model of strength such as advocated by Linker and Dieterich [1992] based on their
two-stage shear resistance observations. At the same time, despite the evidence of a gradual change in
strength, shear resistance changing over a different time or length scale as the contact area excludes
Prakash’s [1998] explanation of a gradual, exponential change in contact area controlling the evolution of
shear resistance in his experiments. So our observations are not fully consistent with either physical interpre-
tation of the prior studies and also do not allow for a simple proportionality between shear resistance and
contact area, equation (5).

There are two additional shear resistance observations that have implications for physical models of faulting
and of these experiments. First, Figure 16b shows somewhat more rapid evolution of shear resistance with
time for the step decreases in normal stress than for the increases. Likely this is mostly due to slip rate increas-
ing during the down step and decreasing during the up step (see below). Figure 17 shows the smallest steps
for which the shear resistance is well resolved (0.1 MPa steps). These are much more symmetric in time
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step to 7 MPa, fitd, = 1.6 um —— step to 6 MPa, fitd, = 1.3 um N :

step t0 5.5 MPa, fit d, = 1.0 um step t0 5.25 MPa, fit d, = 0.64 um (Figure 17a), and here we have esti

stepto 5.2 MPa, fitd, =0.63um  —— step to 5.1 MPa, fitd, = 0.5 um mated fault slip ¢ from the controlled
—— step to 5.05 MPa, fitd, = 0.47 um

load point displacement d;, the mea-
sured shear resistance, and known
stiffness (k = 0.75 MPa/um), § = 4§,
—+% (Figure 17b). There is an inper-
ceptable difference in the horizontal
axis between Figures 17a and 17b
and any changes in slip speed asso-
ciated with these small steps are
unresolved by our measurements.
Because of the apparent symmetry,
the more extensive interpretable
step increase data might be used to
develop models of the response that
are appropriate for either sense of

' T ' 1 stress change. In the following analy-
-5 0 5 10 15 20 . o .

load point displacement (microns) sis we explore this idea in more detail
using the entire range of stable steps.

Shear Stress (MPa)

Figure 18. Complete form of shear stress response to increased normal .
stress. Fits to an exponential are shown with black lines. Fit parameters are ~ Figure 18 shows the same data for
listed in Table 1. shear stress from the step increases

(Figure 3) at a longer horizontal scale

of measured load point displace-
ment, along with fits to each data set with a exponential function At =uAc(1 — exp(—4d,/d,)), where d, is
the apparent characteristic length, Ao is the imposed normal stress change, and y is the steady state friction
coefficient. The fit values of the product uAs and d, are listed in Table 1. The apparent length scale of the
exponential d, increases gradually with the size of the step (Table 1), while the form of the fit remains con-
sistent with an exponential over the entire range of step sizes. As suggested for Figure 17, the increase in
apparent length scale likely results primarily from a reduction in slip speed due the properties of the machine
and the fault strength change that increases with the size of the normal stress step. To account for this and to
compare the response of different sizes, we follow a normalization scheme developed by Bhattacharya et al.
[2016] in which the shear stress change is normalized by the steady state change, such that the normalized
amplitude is 1 for all steps. Then slip is calculated as above from load point displacement, shear stress, and
stiffness (e.g., Figure 17b). The resulting normalized shear stresses versus estimated slip is shown in
Figure 19a for the step increases, here superimposed ascending from small to large step (lowest signal to
noise to highest) so that differences in the form of the smallest (red) and largest steps (purple) are visible.
Most of the 3 times differences in apparent length are removed; however, the larger steps still have some-
what larger weakening distance. This may reflect an increase in the average contact dimension with normal
stress, but for simplicity we ignore this difference and assume that the length scale does not dependent expli-
citly on normal stress.

The same procedure was used on the
well-behaved step decreases in nor-
mal stress Ac = —0.05, —0.1, —0.2,
and —0.25 MPa (Figure 19b). The lar-

Table 1. Fits to Normal Stress Steps (Figures 18 and 19) With an
Exponential Function of Load Point Displacement

Ao (Nominal) MPa Ao MPa dg Microns Figure . .

o ) Hae a £ gest of these show a “hitch” or “ring”
+0.05 0.036 0.47 18 in the response thought to be due
+0.1 0.071 05 18 to slip acceleration and deceleration
02 0.14 063 18 as the servo system responds to rapid
+0.25 0.16 064 18 : Y P P
405 0.32 1.0 18 slip and regains steady control of the
+1 0.65 13 18 load point displacement rate. This
+2 1.28 16 18 may be interpreted evidence of an
— normalized 1 041 19d intrinsic rate dependence of the fault.
+ normalized 1 0.55 19¢

Nonethess the evolution distance for
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Figure 19. Characterized response to step changes in normal stress, after Bhattacharya et al. [2016]. Shear stress has been
normalized by the steady state change in shear stress, such that the amplitude is 1 for all steps, and slip has been estimated
from load point displacement and shear stress (see text). (a) Step increases from Figure 3, superimposed by ascending step
size so that the highest signal to noise step (largest step) is on top. Color scheme as in Figure 3. (b) Same as Figure 19a
but for step decreases. The two unstable steps from 6 and 7 MPa are excluded along with the nearly unstable step from
5.5 MPa (see Figure 5). (c) Stacked normalized shear stress from step increases (Figure 19a) to determine the average
response. The black line is a fit to an exponential with d. = 0.55 pm. (d) Same as Figure 19c but for step decreases
(Figure 19¢) and for step decreases (Figure 19b). d. from the fit is 0.41 pm.

these small steps is very similar to the small up steps (Figure 19a, red). Figures 19c and 19d are the same
data in parts Figures 19a and 19b, respectively, stacked and fit with an exponential function of slip. The
characteristic slip distances are 0.55 um and 0.41 pm for the up and down steps, respectively (Table 1).
Given the control issues in these experiments, and the small step symmetry (Figure 17), in remainder of
this report for the purposes of discussion, conceptual and actual modeling, we take these values to be
the same.

4.3. Models of Shear Strength Evolution

To develop a plausible physical model of the collective step test data set, we use the four fundamental con-
straints from the observations: (1) steady state shear resistance is proportional to the real area of contact, i.e.,
equation (5) (as determined by the normal stress); (2) contact area follows a two-stage response to normal
stress reaching steady state rapidly relative to shear strength; (3) shear strength changes gradually with dis-
placement following a change in normal stress; and (4) that the characteristic length of the shear stress
change is independent of the sign of the normal stress change.

Constraint (1) and the range of normal stress step sizes in these experiments require a somewhat different
approach than in standard studies of rock friction [e.g., Dieterich, 1979; Ruina, 1983] that focus on second-
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order dependencies on slip rate. Our study involves first-order stress changes and thus from (1) requires
first-order changes in contact area. A qualitative two-stage response function for normal stress-dependent
contact area that satisfies constraints (1) and (2) is detailed in Appendix A. The observations (2) and (3) require
that shear stress shows a delayed response to changes in contact area, and our favored model that satisfies
(1)-(3) is that shear resistance evolves following contact area exponentially in slip. Specifically, taking frac-
tional contact area of a nominally flat but rough surface, the ratio of contact area A, to total area A,
A = AJA, to satisfy constraint (1), use the Dieterich and Kilgore [1994, 1996] observation that contact area is
limited by the material yield stress, o), and define a steady state fractional contact area.

as =2 (6a)

Oc

where o, is the contact-scale normal stress which is on the order of the material yield stress [e.g., Beeler et al.,
2016]. Yield stresses at room temperature are on the order of tens of gigapascals for crystalline rocks [e.g.,
Dieterich and Kilgore, 1996]. Equivalently and more generally, using a value of fractional contact area A, asso-
ciated with a reference normal stress o, (6a) can be expressed as

ASS on
- _on 6b
A oo (6b)
To satisfy constraints (3) and (4), we borrow an idea from Ruina [1983] and take the shear resistance, s, to
evolve with contact area, using the general form of (6a) and (6b), oy A/A,, so that s follows area exponentially
in slip using the standard “slip law” form of Ruina [1983]. With this form, s, can be thought of as being
weighted memory of prior fractional contact area:

ds__V s— A (7a)
dt d. 100, )

where u is the friction coefficient and d. is the characteristic contact dimension. Throughout our application
of (7a), we assume that d_ is independent of normal stress, e.g., as might be inferred from Greenwood and
Williamson [1966]. Since most of the inferred area change is more rapid with displacement than for shear
stress (Figure 6) for simplicity take A/Ag = 0,,/5¢ at all times. Then (7a) depends on normal stress exponentially
in slip, as required by the observations:

ds 4
&:—d—(s—ﬂan). (7b)
c

Equation (7b) is the form used by Prakash [1998] to characterize the changes in shear resistance with normal
stress during shock loading.

4.3.1. Simulated Response to Step Increases

In keeping with the first-order step sizes, to simulate step increases with (7b), we ignore standard second-
order rate and state effects and assume that friction is constant. In the experiments the normal stress changes
are not perfectly abrupt, so we represent the change in normal stress as an exponential function

0:00+Aa{1—exp(u)}, (8)

tc

where t, is the time the normal stress change Ao is initiated, gy is the initial normal stress, and t is the
characteristic duration of the change. In these calculations detailed in Appendix B, t. = 0.02 s, which matches
the duration of the imposed changes well [Kilgore et al., 2012]. Keep in mind that t. in these simulations was
chosen qualitatively and somewhat arbitrarily. It is not a property of the fault but rather of the normal stress
control system of the apparatus; nevertheless, large values of t. tend to influence the detailed shear stress
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Figure 20. Slider block simulations of step increases with equations (7a),
(7b), and (8) with = 0.7, d. = 0.5 um, k = 0.75 MPa/pm, and t. = 0.02 s.
(a) Shear stress versus load point displacement. (b) Shear stress versus fault

slip. (c) Shear stress versus normal stress.

response. We use a slider block
model to relate shear stress to slip,
t=k(0; — J), and we equate shear
stress on the fault to the fault
strength that is defined by (7b).
Figure 20 shows simulations with
4 =0.7 and d; = 0.5 um. These ade-
quately capture the increase in
apparent slip distance with step size
(compare Figures 20a and 19b) but
are not identical to the observations
(Figure 18). Similarly, the simula-
tions also produce a relatively small
amount of apparent evolution of
shear resistance during the stress
step (compare Figure 20c with
14a). It appears from the compari-
son with the data that the duration
of normal stress increase in the
simulation is a bit shorter than in
the actual experiments. In addition,
matching the specific form of the
observed change of shear stress
with time, or loading displacement
likely depends on the slip rate
dependence and other fault prop-
erty dependencies not included in
(7b), the details of which are not
well established [e.g., Ruina, 1980;
Bhattacharya et al., 2015].

5. Tests of the Inferred
Response

Because these experiments of
Kilgore et al. [2012] repeat those of
Linker and Dieterich [1992], implicit
in our interpretation is there is no
difference between the intrinsic
fault response in the two studies; in
other words, our improved experi-
mental technique and recordings
revealed the response that was
unresolved in the earlier study.
To simultaneously explore this
possibility in detail and to test the
simple model response in equa-
tions (7a) and (7b), we examine
the predictions for the two other
types of tests in our complete data
set: the pulse tests (Figure 7) and
the stability of slip in response to
step decreases in normal stress
(Figure 8).
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Figure 21. Pulse test summary. (a) The peak stresses from six sets of pulse tests (open symbols), each with seven ampli-
tudes (0.05, 0.1, 0.2, 0.25, 0.5, 1, and 2 MPa) shown with their averages (solid circles) versus the natural logarithm of the
ratio of the target normal stress to the starting value. Shown for comparison are the analogous measurements from Linker
and Dieterich [1992]. (b and c) Slider block simulations of pulse tests with equation (7b) with i = 0.7, d. = 0.5 pm,

k= 0.75 MPa/um, and a pulse duration of At = 0.2 s. (d) Summary of the pulse test simulations in Figure 21c plotted in the
same format as Figure 21a.

5.1. Pulse Tests

The first comparison is between the pulse tests (Figure 7) and those of Linker and Dieterich [1992]. The test
metric in Linker and Dieterich’s data reduction is the eventual peak stress that follows their first and second
response stages. Ideally, this peak would be unambiguous and well resolved in both studies, as opposed to
being overprinted by coupling of normal stress to shear as in the Linker and Dieterich step tests.
Unfortunately, there is at least some coupling of shear stress to normal stress in our pulse tests that is absent
from the step tests. For instance, in Figure 7b, for the largest pulse amplitude the shear stress increases essen-
tially immediately as the normal stress increases, and decreases immediately when the normal stress is
reduced at the end of the pulse. The slope of these changes in shear stress versus time exceeds the stressing
rate, k*V,, so there are machine effects, smaller but similar to those seen in Linker and Dieterich [1992]. This
introduces ambiguity in the values of the peak stress. Whereas Linker and Dieterich [1992] always saw the
immediate normal stress to shear stress coupling effect, regardless of pulse size, and used the analogous
peak of the shoulder as the peak fault strength, since the coupling in our smaller steps is not large enough
to produce a shoulder, we cannot remove the coupling from our pulse measurements. For internal consis-
tency we use the overall peak stress from each of our pulse tests as our peak strength metric. Thus, our pulse
test measurements cannot be directly equated with those from the earlier study. Not surprisingly, the peak
strengths from pulse tests versus the natural logarithm of the ratio of target normal stress to the starting
value (Figure 21a) differ in two ways to those in Linker and Dieterich [1992]; the 1992 data have lower
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-2.5 values and are linear in log stress.
204 & & Simulations with (7b) capture the
N N s nonlinearity of the peaks in our
22 S study (Figure 21d), but the simu-
1.5 - gg :Z lated values are significantly smal-
g 52 % 1.5 . ler than actually observed in
= [ 2 Figure 21a. While this may be due
5 104 ° ° ey | g to coupling, this test neither con-
firms similarity between the two
_‘,,—"';,’,Smme studies nor allows a self-consistent
057 bk M ~0.5 extrapolation of step results to the
y ° ° pulse tests. These remain open
- H - questions to be addressed in

T T T T T T subsequent studies.

0.0 0.2 0.4 0.6 0.8 1.0
k (MPa/micron) 5.2. Stability

Figure 22. Approximate location of the boundary between stable and In laboratory experiments the
unstable response of slip to step decreases in normal stress (right axis) for stability of fault slip in response

the experiments of Linker and Dieterich [1992], k = 0.5 MPa/um and Kilgore
et al. [2012], k = 0.75 MPa/pum. Open and solid symbols denote unstable and
stable responses, respectively. The dashed line is the estimated position

to increases in loading rate and
decreases in  normal stress

of the boundary with a slope of 0.825 um. The right axis is the measured depends on the stiffness of the
steady state size of the shear stress change corresponding to step normal fault, the rate fault strength
increases of the left axis (see Figure 6a). changes with slip, and on the stiff-

ness of loading system; the rate
shear stress applied to the fault changes with displacement of the loading point [Dieterich, 1978].
Instability results when fault stiffness exceeds the loading stiffness, i.e, when the fault is able to lose
strength more rapidly with displacement than the loading system displacement rate of stress change.
For determining the effective stiffness of the fault, a useful technical advance of Kilgore et al. [2012] was
to reduce the distance between the mounts of the fault slip sensor from the approximately ~30 mm of
Linker and Dieterich [1992] to ~11 mm. This reduction stiffened the control system from ~0.5 MPa/um
to ~0.75 MPa/um. The improved stability requires that the boundary in these two studies occurs at
slightly different step amplitudes (Figure 22). The modest stability difference can be used with the
empirical relation (7b) to characterize the fault properties, as follows. If we assume that the response

of shear resistance to normal stress at constant slip rate is the simple exponential form, At = uAo, exp

(—é—s> from (7b), the maximum rate of slip weakening is —uAc,/d.. This is the critical stiffness of (7b),

and the associated fault stability boundary in Figure 22 is

Ao, = ﬁkc. 9
u

For these experiments x = 0.63 (Figure 9) and the boundary in Figure 22, with slope of 0.83 pm, corresponds
to d. = 0.52 pm. This is well within the range of weakening distances inferred empirically from the step tests.
In other words, our assumption of consistency between the strength in response to stable step increases and
decreases is verified by the position of the stability boundary. An important caveat is that we have ignored
any rate dependence of the fault.

6. Discussion

The normal stress stepping experiments reported here and in the prior study [Kilgore et al., 2012] resolve the
inconsistency between the previously published experiments [Linker and Dieterich, 1992; Prakash, 1998] by
determining that shear stress evolves smoothly and approximately exponentially with slip of the interface
rather than following a two-stage response to normal stress change. That the fault strength may evolve
purely with slip eliminates the problem discovered by Rice et al. [2001] and Ranjith and Rice [2001] that in
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dimensioned calculations immediate changes in shear resistance accompanying a normal stress change are
unstable and have no solution. However, it is surprising that rate-independent equations, (7b) and (9), well
describe shear resistance and stability of slip in these experiments. Most prior work has shown that rate
dependence is the most important friction property [Dieterich, 1979; Ruina, 1983]. Ideally, this type of normal
stress dependence should be integrated into rate- and state-dependent friction models [e.g., Prakash, 1998],
but at present it is unknown how to do that. For example, the experiments show that large changes in stress
result in changes in the shear strength of the interface over the characteristic length scale, d,, that is consis-
tent with contact dimensions. Typically, that scale is attributed to a state variable which in rate and state fric-
tion models is only a second-order contribution to fault strength. Thus, a recasting of frictional constitutive
equations to account for first-order changes in stress will have to include evolution of the first-order proper-
ties of the interface with slip (e.g., (7b)), as done in this context by Prakash [1998].

However, while Prakash [1998] proposed that shear resistance is the product of a rate- and state-dependent
friction relation and a separate state variable with a contact dimension length scale that characterizes the
normal stress dependence of the shear resistance (of the form of equation (7b)), there are fundamental pro-
blems with this approach. First, as mentioned earlier, the normal stress-dependent state variable represented
fractional contact area in Prakash [1998] and our measurements are not consistent with that simple interpre-
tation. Second, rate- and state-dependent friction as originally intended [Dieterich, 1978, 1979] already
accounts for fractional contact area in determining shear resistance, as follows. Based on earlier work of
Bowden and Tabor [1950, and others], Dieterich [1978, 1979] adopted the conceptual model (5) as a basis
for rate and state friction, namely, that the shear resistance is the product of fractional contact area and an
intrinsic shear resistance of the population of contacts on the interface, S,

7= SA. (10)

By including in S a second-order direct positive dependence on slip rate (So + f(V)) and in A a second-order
gradually realized negative dependence on slip rate (Ay — g(V)) while ignoring the product of second-order
terms results in the basic form of RS friction (z =74 + a In(V/Vy) + by) [Dieterich, 1979; Ruina, 1983]. Accordingly,
the “direct effect” alnV term results from the small dependence of S on slip rate and the “evolution effect” or
state variable term (by) from the small dependence of contact area on slip rate. In our experiments since
shear resistance apparently does not strictly track contact area, this product representation needs to be
rethought and modified. And there are some accounting issues with contact area that need to be addressed
in a recasting of the Prakash [1998] normal stress formulation so that rate, state, and normal stress dependen-
cies are internally consistent.

To that end, while our earlier suggestion that shear resistance evolves with contact area (equation (7a))
ensures that (5) or (10) is satisfied for steady state conditions, and as required by a shear force balance, it
is hard to understand physically how fault strength such as represented by (7b) can remain nearly constant
as contact area changes rapidly, particularly for a decrease in contact area. One possible way out of this
apparent inconsistency is to first acknowledge that the strength of a fault cannot be measured without
active slip. Therefore, rapid changes in fault properties, say, in contact area, that affect fault strength may
not be quite so immediately temporally apparent in a shear resistance time series. Second, strength loss
according to (7b) is most rapid immediately following a stress step. That is, according to (7b) the highest rate
of strength loss associated with an instantaneous normal stress reduction is the immediate rate of slip
weakening Ac,u/d.. Some details of expected immediate effects are detailed in Appendix B (Figure B1)
and verified in the slip-time histories of the normal stress step increases (Figure 23). Here as in the simulations
with (7b) (Figure B1), the largest excursions from constant slip rate (constant slope in this plot of slip
versus time) and the lowest slip rates coincide with the step. Thus, (7b) is a model where fault strength
cannot change instantaneously in time and yet at high resolution still appears to produce immediate
changes in strength.

Unfortunately, because the size of the slip rate change depends on the properties of the machine (stiffness)
as well as on the imposed change in normal stress, some careful well-instrumented experiments in which the
machine response can be accounted for, and of which there are thoughtful analyses, are needed to better
and fully understand fault “strength” in this context. Such careful, well-instrumented, and interpretable
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2010-08-31-15-31 experiments would be more easily
step to 7 MPa H
— ctepto 6 MPa conducted in .a geometry other than
-1 step to 5.5 MPa - DDS. Corrections of fault normal
—— i) strain due to coupling to shear and

normal stress is unique to this geo-
metry and do not arise, for example,
in rotary shear [Bhattacharya et al.,
2016]. Similarly, the strong tendency
to observe coupling between normal
stress and shear stress (e.g., Linker
and Dieterich [1992] and Hong and
Marone [2005], and in the pulse tests
in this study (Figure 7b)) is a conse-
quence of the relative orientation of
the applied stresses in DDS, is diffi-
cult to avoid, and is absent in other
standard configurations. Moreover,
and related to these issues is the pre-
Figure 23. Observed excursions in slip with time due to apparently immedi-  sence of two faults (Figure 2) which

ate changes in fault strength associated with normal stress increases. The may have slightly different properties
normal stress change denoted in the legend is imposed at time equal zero.

estimated slip (microns)

time (s)

in response to the rapidly applied
stress changes, or which may see
slightly different stress changes due
to small misalignment of the loading frames, small deviations of the side block fault surfaces to perfectly par-
allel to the normally loaded side block surfaces, deviations from the two center block fault surfaces from
being perfectly parallel, from the shear loaded surface of the center block from being perpendicular to the
applied shear load, or from that surface from being perfectly perpendicular to both of the faults. Again, these
are issues unique to DDS. In the case of our experiments, only one of the faults is instrumented and while
much might be gained by separately measuring displacements across both faults, many potential and real
problems would be avoided by using a geometry with a single fault.

That said, these normal stress change experiments have proven difficult to interpret even given high-quality
measurements that lack stress coupling machine effects (Figures 3 and 8), and while a strong motivation for
experimentalists is to minimize the influence of the apparatus, there are two additional issues to keep in mind
before going to extreme lengths to conduct room temperature experiments that improve upon those in this
report. First are the issues of the changes in slip rate that invariably result when normal stress is changed
(Figures 22 and B1), independent of the fault’s intrinsic rate dependence. Since these depend on the loading
system stiffness [Shimamoto et al., 1980; Kilgore et al., 2017], all of those have to be well characterized in inde-
pendent tests. Obviously, these effects will depend on the machine of choice, making comparisons between
studies more difficult. Second, as pointed out by Nagata et al. [2014] in a different but related context,
improvements in experimental technique should produce a clearer understanding of the relationship
between normal stress change and shear resistance in dry room temperature experiments. Establishing
the contact scale physics that controls shear resistance at room temperature would be a significant first step
to understanding the range of natural temperatures and stresses over which the response represented by
equation (7b) will apply. However, the cases of interest to natural fault mechanics are for rocks at higher
normal stresses, undergoing localized slip within saturated shear zones at elevated temperature and in the
presence of reactive fluids. Determining whether or not the empirical relation (7b) can be applied under such
conditions may be of greater practical need than a deeper understanding of the contact scale micromecha-
nics of dry room temperature rock friction.

7. Summary

In room temperature dry friction experiments on initial bare rock surfaces of granite at normal stresses
between 5 and 7 MPa, rapid normal stress changes result in gradual, approximately exponential changes
in shear resistance with fault slip. The characteristic distance of the shear resistance evolution is on the
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order of 0.5 um. In contrast, fault
normal displacement and the
amplitude of small high-frequency
elastic waves transmitted across
the surface follow a two-stage
response to rapid normal stress
1.2 % changes: a large immediate and a
} smaller gradual response with slip.

The gradual response has a similar

slip distance for normal displace-

0.2 ::IT;TVef'ei:;r:::PO”SG ment and transmitted amplitude;
—— normal stress however, it is significantly smaller
than that of shear resistance. Based

58 100 102 104 106 108 11.0 on a prior study that showed the
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contact area, transmitted amplitude,
and fault normal displacement,
we infer that shear resistance fol-
lowing normal stress changes does
not directly or immediately track
changes in contact area on the fault.

A/A,

------------- total fractional contact area 1.1
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1.0

Figure A1. Simulated change in fractional contact area (left axis) for a 40%
change in fractional normal stress (right axis) using equation (A1c) in
Appendix A.

The shear resistance has a similar characteristic length for both increases and decreases in normal stress, at
least for the smallest stress changes that are not highly affected by slip speed excursions associated with the
step change. Furthermore, the stability of sliding in response to large step decreases in normal stress is well
predicted using the slip length observed in step increases. Analysis of the shear resistance and slip time his-
tories suggests that nearly immediate changes in strength occur in response to rapid changes in normal
stress; these are manifested as a change in slip speed immediately at the step change in normal stress,
despite the gradual change in measured shear stress. These changes in slip speed can be accounted for in
models using rate-independent strength. Our interpretation is that the size of this acceleration or decelera-
tion response depends on fault properties, the size of the stress change and the characteristics of the
testing machine.

Appendix A: Two-Stage Representation of Closure, Transmitted Amplitude, or
Contact Area Change

Following Linker and Dieterich [1992], here we present a two-stage model that might be used to represent
closure, transmitted amplitude, or contact area in experiments with variable normal stress and slip speed.
The approach is motivated by our observations (e.g., Figures 3-5) from step increases, the prior conceptual
model of Linker and Dieterich [1992], and the many observations of low-temperature friction [e.g., Dieterich,
1978, 1979; Ruina, 1983] that indicate changes in strength associated with variable slip speed are small rela-
tive to the ambient strength. Accordingly, fractional contact area, closure, and transmitted amplitude depend
on slip speed and normal stress and these dependences can be partitioned into two components, an
immediate dependence on normal stress and a slower component that depends on normal stress and slip
speed. Here our development uses fractional contact area A as an example:

Alon, V) = Ai(0n) + Ai(on, V) (Ala)

The immediate dependence on normal stress can be parameterized defining an arbitrary reference normal
stress o, with associated fractional contact area Ay and the immediate dependence is

1dA,7 1 dO'n
Ao dt _0'0 dt '

(A1b)
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The slow response to normal stress here is somewhat arbitrarily represented by Ruina's [1983]
slip formulation

1 dAt - 4 Ar On
I Ara

where d; is the characteristic slip distance and such that at steady state the slow contribution to fractional
contact area is Ay = Apon/0o. The choice also requires that the intrinsic response of fractional contact
area to changes in normal stress is to evolve exponentially in slip. Figure A1 shows the behavior of
equation (A1c) in response to changes in normal stress. In this example 45% of the response is immediate
and the characteristic length is 0.1 pm.

Because steady state contact area is known also to depend on slip speed [e.g., Dieterich and Kilgore, 1994;
Nagata et al., 2014] (A1c) can be expanded to include a slip rate dependence,

1AV (A o
Ao dt —  d;

4
g o) .

Here the value Ay is that associated with sliding at the reference slip speed Vj at the reference normal stress
0. Guidance on the magnitude of the f coefficient can be found in the prior studies of transparent materials
[Dieterich and Kilgore, 1994, 1996; Nagata et al., 2014]. Accordingly, for consistency with rate and state friction
formulations, S is second order, typically between 1 and 2%. That is, when normal stress is at the reference
stress, the steady state value A**/Ag =1+ In(Vo/V), with 0.01 < <0.02.

Appendix B: Immediate Effects of Changing Normal Stress on Slip Speed
The effect of fault stress change on the rate of fault slip in a laboratory test depends on the elastic properties
of the fault and testing machine, the size of the stress change, and on the particular sensitivity of the fault

strength, s, to the change. These various contributions can be illustrated for quasi-static slip, where the fault
strength and shear stress are equal, using a single degree of freedom slider block model

Ezk(ﬁq), (B1a)

where V| is the velocity of the load point of the testing machine and k is the stiffness. Rearranging to solve for
the slip speed, V, is

(B1b)

For a fault initially sliding at steady state at the loading rate, changes in slip speed associated with an
imposed stress change depend on fault stiffness and on the rate fault strength changes with slip. Slip rate
decreases if the fault strength goes up with displacement; the lower the stiffness the more pronounced
the effect.

Using examples from Kilgore et al.'s [2012] step increases in normal stress as a guide and following explicit
recommendations from USGS internal reviewer Path Bhattacharya, we show the influence of changing fault
strength on slip speed for a system in which the fault has no rate dependence of strength, and immediate
velocity excursions arise from gradual but nonetheless apparently rapid changes in fault strength. We take
the evolution of fault strength following a change in normal stress to be the Prakash [1998]-like evolution

ds (s —pe0n)
do d (62)
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Figure B1. Simulated change in shear stress, shear strength, slip velocity, and slip with a change in normal stress using
equations (B1a), (B1b), and (B2). (left column) The response to a 2 MPa change in normal stress with oo = 5 MPa,
dc=0.5MPa, and k = 0.75 MPa/um. (top row) Stress versus time (lower axis) and slip (upper axis). (bottom row) Slip velocity
(left axis) and slip (right axis) versus time. (right column) The response to a 0.25 MPa change in normal stress using the same
plots as in Figure B1 (left column).

Here d. is a characteristic weakening distance, o, is normal stress, and u, is a constant friction coefficient.
Combining with (B1a) results in the slip rate

o Voo (83)
71— (s—#90n)
kd.

For a fault sliding at steady state at V, an instantaneous change in normal stress from an initial value o, to
final o1, produces shear strength (3) that is exponential in slip

-5
S = poOf — UoAAon €XP (d—) ; (B4a)
C

with a steady state value ooy, For this case the slip velocity following the stress change has the analytical
solution that results from substituting (B4a) for s and o for ¢, in (B3),

Vi

HolAon =5\
d EXp(dC>

V =
T+~ -
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Accordingly, for an abrupt increase in normal stress, though the fault strength does not strictly change with-
out slip and changes gradually at that, the slip speed immediately changes from V, to V,/ <1 + %) Thus,

the change in slip speed depends on the size of the stress change (Ac,), the elastic properties of the loading
system (k) and the fault properties (uy and d).

In the Kilgore et al. [2012] experiments the normal stress changes are not so abrupt. To model these, we use
the general forms of the slider block and fault strength, equations (B1a) and (B1b), and (B2), respectively. The
simulations start from 5 MPa normal stress; rapid step changes in normal stress are imposed following

oc=o00+ Aa[1 - exp(@)]. Here t, is the time the normal stress change Ac is initiated, o, is the

initial normal stress, t. is the characteristic duration of the normal stress change, and t. = 0.02 s (this is
a reasonable representation of the steps in the 2012 experiments). Loading velocity is 1 pum/s, d. = 0.5 um.
For a step of 2 MPa normal stress (Figure B1, left column), there is a significant excursion in slip speed
(lower plot). The recovery time is quite long. As a consequence there is an apparent lengthening of the
time to get to steady state (top plot), despite this fault having no intrinsic rate dependence. For compar-
ison is a much smaller step of 0.25 MPa (Figure B1, right column). In these Kilgore et al. [2012] experiments,
the fault strength and machine interactions can explain the immediate reduction in slip speed associated
with the normal stress increase (see Figure 23, in the text), and the lengthening of the apparent strength
evolution distance (by ~3 times) as the step size increases, independent of the rate dependence of the
fault itself. As for the abrupt stress changes, equation (5), the size of the slip speed excursions depend
on loading system properties (k), fault properties (1, d.), and upon the size of the imposed change in
stress (Aop).
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