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[1] The dynamics of a spring-slider system with a single degree of freedom was
investigated, focusing on two different rate- and state-dependent friction laws. While the
inertia-controlled behavior and stick-slip cycles for a system that obeys the slip law have
been extensively simulated, this study presents a comparative study of a system that
obeys the slowness law. A key conclusion is that for both friction laws the overall stress
drops are linearly related to the logarithm of the loading velocity (and the recurrence time)
through the velocity-weakening parameter b � a and normal stress. Relatively higher
peak stresses, larger quasi-static stress drop, and larger effective fracture energy are
associated with a system that obeys the slowness law. Consequently, the partitioning of
stress drop between quasi-static and dynamic slips, as well as dynamic overshoot and
strength recovery, varies according to whether the slowness or slip law has been adopted.
Analytic approximations were derived that elucidate the interplay of dynamics, energetics,
and frictional constitutive behavior in controlling the scaling of stress drops with
loading velocity and recurrence time. Seismological implications of the scaling behavior
are also discussed. INDEX TERMS: 3220 Mathematical Geophysics: Nonlinear dynamics; 5104

Physical Properties of Rocks: Fracture and flow; 7209 Seismology: Earthquake dynamics and mechanics;
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1. Introduction

[2] Earthquakes and deformation along natural faults
involve the complex interplay of boundary conditions of
loading and mechanical response of a highly heterogeneous
structure. Physical models are useful in understanding the
mechanics of earthquake rupture and in isolating the effects
of competing natural mechanisms [Rice, 1983; Rudnicki,
1988; Scholz, 1990]. Even simple models can be helpful in
many circumstances, provided that the appropriate physics
and mechanics are contained within them and their limi-
tations are kept in mind. A notable example is the single
degree of freedom spring-slider model that has provided
important insights into triggered earthquake phenomena
[Rice and Gu, 1983], nucleation of earthquake slip [Diet-
erich, 1986], earthquake afterslip [Marone et al., 1991],
heterogeneity of fault slip [Boatwright and Cocco, 1996],
and dynamics of stick-slip cycle [Rice and Tse, 1986; Cao
and Aki, 1986].

[3] The nonlinear dynamics of a spring-slider system
hinges on the friction constitutive law that has been pre-
scribed for the sliding surface. In recent years, two classes
of rate- and state-dependent friction law are commonly
used. When normal stress is constant, one of the friction
laws uses state variables that evolve only with slip, whereas
the other can also describe evolution with stationary contact
time. Accordingly the former is commonly referred to as the
‘‘slip law’’ and the latter as the ‘‘slowness law’’ [Beeler and
Tullis, 1994; Perrin et al., 1995; Nakatani and Mochizuki,
1996]. These laws can be extended to explicitly describe the
effect of normal stress [Linker and Dieterich, 1992; Diet-
erich and Linker, 1992].
[4] As far as the frictional responses to velocity changes

in quasi-static tests are concerned, most data can be fitted
reasonably by either the slip or slowness law. Nevertheless,
the two laws also have subtle differences in other aspects.
Experimental observations of Beeler and Tullis [1994]
indicated that strength changes during slide-hold-slide tests
are in better agreement with the slowness law than the slip
law. Direct observations of frictional contact by Dieterich
and Kilgore [1994, 1996] also show that contact area
increases with stationary contact time, a phenomenon that
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the slip law can not capture. In their continuum dynamics
modeling of earthquake rupture as self-healing pulses as
proposed by Heaton [1990], Perrin et al. [1995] concluded
that steady pulse solution exists for the slowness law but not
for slip law.
[5] Previous analyses of nonlinear dynamics of the

spring-slider system have focused on the slip law [e.g.,
Rice and Tse, 1986; Cao and Aki, 1986; Gu and Wong,
1991; Weeks, 1993; Boatwright and Cocco, 1996]. Likewise
investigations of the dynamics under variable normal stress
[He et al., 1998] have been conducted for the slip law only.
While linear stability analyses [Ruina, 1983] have shown
that the slip and slowness laws give identical responses
under small perturbations, Ranjith and Rice [1999] recently
showed that nonlinear stability behavior for the slowness
law can be very different from that for the slip law [Gu et
al., 1984]. Therefore, it is likely that the inertia-controlled
motion in a stick-slip cycle will also have different dynamic
attributes for the two classes of friction law.
[6] In this study, we investigate systematically the

dynamics of stick-slip cycles in a spring-slider system that
obeys the slowness law, with several questions specifically
in mind. To our knowledge, the influence of inertia on such
a system has not been investigated systematically. Previous
studies on the slip law [e.g., Cao and Aki, 1986; Gu and
Wong, 1991] have shown that the stress drops increase with
decreasing loading velocity and increasing recurrence time.
How are the dynamic attributes (such as the dynamic and
static stress drops, dynamic overshoot, and recurrence time)
different from those in a system obeying the slip law? Gu
and Wong [1991] have demonstrated that the dynamic and
static stress drops scale with the velocity-weakening param-
eter b � a in a system obeying the slip law, and yet
Marone’s [1998] quasi-static approximation suggests that
the static stress drop scales with the evolution parameter b
instead in a system obeying the slowness law. Does this
apparent discrepancy represent intrinsic differences between
the dynamic responses of systems obeying the two different
friction laws? The scaling relations have been established
empirically by numerical simulations. Can these relations be
interpreted by basic considerations of the mechanics and
energetics of the spring-slider system? Ben-Zion and Rice’s
[1997] dynamic simulation of slip on a smooth fault
embedded in an elastic solid showed that the dynamic
overshoot is higher if friction evolves according to the slip
law. Is such dynamic behavior in a continuum model also
observed in a spring-slider system?
[7] To address these questions, the present work studies

the characteristics of dynamic motion of a single degree of
freedom spring-slider system under conditions of constant
normal stress, focusing on the slowness law. To elucidate
the subtle differences between the two evolution laws, the
new simulations are compared with previous studies for the
slip law. General scaling relations that may be applicable to
a system obeying a rate- and state-dependent friction law
are summarized, and seismological implications will also be
discussed.

2. Friction Constitutive Equations

[8] For frictional sliding following a rate- and state-
dependent law, the shear stress t is related to normal stress

s, slip velocity V, and state variable q as follows [Linker and
Dieterich, 1992]

t ¼ m
*
sþ as ln V=V*

� �
þ bs ln q=q*

� �
ð1Þ

where m
*
and q

*
denote steady state values of the friction

coefficient and state variable at the reference velocity V
*
.

For the slowness law the evolution of the state variable
(under constant normal stress) is governed by the following
differential equation,

dq
dt

¼ 1� qV
Dc

ð2aÞ

where Dc is a characteristic distance for the evolution of
frictional strength. It can be seen from (2a) that the state
variable increases linearly with time when the frictional
surface is under stationary contact (with slip velocity V = 0).
[9] For the slip law the evolution of state variable is

described by the following equation [Linker and Dieterich,
1992]:

dq
dt

¼ �Vq
Dc

ln
Vq
Dc

� �
ð2bÞ

It should be noted that the evolution of the state variable is
quite different for slip velocities approaching zero. (2b)
implicitly rules out the possibility of stationary contact, and
the state variable can evolve only if slip occurs under
nonzero velocity [Ruina, 1983].
[10] Notwithstanding this difference, the two evolution

laws (2a) and (2b) have several common features. First,
under steady state the state variable is a constant given by
qss = Dc/V, and in particular q

*
= Dc /V*

. Second, the steady
state frictional strength (on substituting into (1)) is tss = m

*
s

+ (a � b)sln(V/V
*
) for both evolution laws.

[11] Before moving on to discuss numerical simulation,
some notational differences in the literature should be noted.
For the state variable, we have followed the study of Linker
and Dieterich [1992] to define q as a quantity with the
dimension of time. In many previous studies dealing with
the slip law [e.g., Gu et al., 1984; Rice and Tse, 1986; Gu
and Wong, 1991; Boatwright and Cocco, 1996; He et al.,
1998] a nondimensional state variable of the form � =
bln(V

*
q/Dc) is used instead. Furthermore we have used the

nondimensional forms (a and b) of the frictional constitutive
parameters and denoted the characteristic length by Dc. In a
number of previous studies [e.g., Gu et al., 1984; Rice and
Tse, 1986; Gu and Wong, 1991; Boatwright and Cocco,
1996; Ranjith and Rice, 1999], the characteristic length is
denoted by L, and the constitutive parameters (A = sa and
B = sb) have dimensions of stress.

3. Dynamics of Spring-Slider System Under
Constant Normal Stress

[12] We consider the dynamics of a spring-slider system
with a single degree of freedom (Figure 1). The slider has
unit area and mass m, and the stiffness (spring constant) is k.
The spring applies a force on the slider which is propor-
tional to the displacement of the slider d relative to that of
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the load point do, and the slider moves when this spring
force overcomes the frictional resistance t. The equation of
motion of this system is therefore

m
d2d
dt2

¼ k do � dð Þ � t ð3Þ

where time is denoted by t. The slip velocity will be denoted
by V = dd/dt. Combining (1) and (3) and either (2a) or (2b),
we obtain a system of ordinary differential equations that
govern the dynamics of the spring-slider system obeying the
specific friction law. Linear stability analyses have shown
that the critical stiffness for both evolution laws is given by
kcr = s(b � a)/Dc. If the stiffness is lower than this critical
value, the spring-slider system will undergo stick-slip cycles
when loaded at a constant load point velocity Vo = ddo/dt.
The mathematical analysis is simplified by normalizations
suggested by Gu et al. [1984] and Ranjith and Rice [1999]
for the slip law and slowness law, respectively, and the
numerical procedure adopted here is identical to that of He
and Ma [1997] and He et al. [1998].

3.1. Stick-Slip Cycles: Slip Versus Slowness

[13] The development of cyclic stick-slip for the slowness
law is illustrated in stress-velocity phase plane for the case
of b/a = 2, k/kcr = k/[s(b � a)/Dc] = 0.8, and
T ¼ 2p

ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 5s (Figure 2). For comparison, the simu-

lation using the slip law for the same parameters are also
included. The stick-slip cycles are qualitatively similar. The
peak stress is attained at the point A, beyond which the slip
velocity increases rapidly. At point B, the sliding motion
undergoes a transition from being quasi-static to dominated
by inertia. This transition is manifested by the velocity V
increasing to above a threshold, which in our simulations is
defined by the criterion 2pDc /(VT ) < 5 � 10�4. Once this
threshold velocity has been attained the left-hand term of (3)
cannot be neglected, and the stress drops drastically while
the motion accelerates until the velocity attains a maximum
at C. At this point the spring force is exactly balanced by the
frictional resistance, beyond which the motion decelerates
and the stress drops further during this dynamic overshoot.
The overshoot ends at point D, which also represents the
minimum frictional stress in the stick-slip cycle. The stress

drop process from A to D represents the ‘‘slip’’ phase of the
cycle, whereas the subsequent strengthening from D to A
represents the ‘‘stick’’ phase that occurs over a significantly
longer timescale, that approximately spans the totality of the
recurrence time for the stick-slip cycle. The corresponding
curves for stress as function of slip are presented in Figure 3.
[14] We have conducted simulations for a range of

parameters, with b/a ranging from 1.2 to 2.0, k/kcr ranging
from 0.05 to 0.95 and Vo/V*

ranging from 2 to 1024, while
keeping T fixed at 5 s (Table 1). While the stick-slip
behavior for both evolution laws is qualitatively similar,
our simulations show that there are several important differ-
ences. (1) For the slowness law, the peak stress increases

Figure 1. A spring-slider system with single degree of
freedom. The slider has unit area and mass m, and the spring
constant is k. Constant normal stress s is applied.

Figure 2. Stress-velocity phase plane plot with k = 0.8 kcr,
T = 5 s, b/a = 2, and V

*
/Dc = 1.17 � 10�8 s�1, V0 = 2V

*
.

The limit cycle for a system obeying the slowness law (solid
line) is compared with the slip law (dotted line). Steady state
line (dashed line) and constant state lines (thin solid lines)
are also plotted for reference. For the slowness law case, it
should be noted that there is a fast healing process during
initial stage of the ‘‘stick’’ phase, which is characterized by
the subhorizontal trajectory with drastic decrease (�17
orders of magnitude) in slip velocity.

Figure 3. Normalized stress as function of slip for the
slowness law case. The last two stick-slip cycles correspond
to the limit cycle plotted in Figure 2.
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with decreasing loading velocity (Figure 4), following a
scaling relation given by

tmax � sm
*

� �
= s b� að Þ½ 	 ¼ D� g ln Vo=V*

� �
: ð4aÞ

with g 
 1.1. The parameter D depends on the mass,
stiffness and friction constitutive parameters, but is
independent of loading velocity. It ranges from 6.2 to
13.5 for stiffness ratio fixed at k = 0.8kcr. For the slip law
the scaling relation is relatively simple, with D 
 0 and
g 
 1.0 [Gu and Wong, 1991]. In general, a higher peak
stress is attained in a system obeying the slowness law for
identical friction constitutive parameters (Figure 4a). (2)
The quasi-static stress drop (from point A to B in Figure
2) is appreciably higher in a system obeying the slowness
law. (3) The dynamic stress drop (from point B to C in
Figure 2) as well as the dynamic overshoot (from point C
to D in Figure 2) are smaller for the slowness law case.
The dynamic stress drop also increases with decreasing
loading velocity, following a scaling relation of the form

�td= s b� að Þ½ 	 ¼ C0 � x ln Vo=V*

� �
; ð4bÞ

where x is a constant that decreases with increasing
stiffness. It ranges from 0.38 to 0.45 for stiffness ratio

fixed at k/kcr = 0.8 (Figure 4b). The intercept C 0 depends on
the stiffness and mass but is independent of the loading
velocity. In a system obeying the slip law the dynamic stress
drop follows a similar scaling relation but with x 
 1,
independent of stiffness [Gu and Wong, 1991]. (4) In a
system obeying the slowness law, strength recovery during
the ‘‘stick’’ phase initially extends to much lower velocities
and takes place at almost constant stress over a longer
duration (corresponding to the subhorizontal portion from
point D to E in Figure 2), and the state variable comes to a
value comparable to the steady state value Dc /V0 which
implies recovery to the steady state strength at V = V0.
Subsequent loading drives the stress to accumulate mono-
tonically along a trajectory with slope comparable to and

Table 1. Numerical Simulation Data for a System Obeying the

Slowness Law

Vo

V*

kDc

sa
b�að Þ
a T (s) ln

�
VL

V
*

� �tV
*

Dc

��s
s b�að Þ

��d
s b�að Þ

G
Dc b�að Þs

4 0.05 1 5 24.98 334.94 66.63 33.96 561.0
64 0.05 1 5 24.89 19.06 60.70 30.98 490.2
1024 0.05 1 5 24.79 1.07 54.72 27.97 426.3
4 0.2 1 5 23.39 72.20 56.43 29.80 320.2
64 0.2 1 5 23.29 4.07 51.04 27.03 275.1
1024 0.2 1 5 23.17 0.23 45.57 24.22 237.3
4 0.4 1 5 22.47 31.51 47.64 26.58 235.2
64 0.4 1 5 22.36 1.76 43.11 24.18 209.8
1024 0.4 1 5 22.24 0.10 38.49 21.73 168.5
64 0.95 1 5 20.11 0.45 20.73 15.83 47.3
256 0.95 1 5 20.07 0.11 20.31 15.59 44.1
1024 0.95 1 5 20.02 0.025 19.86 15.33 41.6
4 0.025 0.5 5 25.07 364.60 72.47 36.88 552.8
64 0.025 0.5 5 24.98 20.87 66.43 33.84 491.7
1024 0.025 0.5 5 24.88 1.18 60.32 30.77 436.1
4 0.1 0.5 5 23.48 79.02 61.47 32.29 304.6
64 0.1 0.5 5 23.39 4.48 56.04 29.52 265.9
1024 0.1 0.5 5 23.28 0.25 50.51 26.70 236.5
4 0.2 0.5 5 22.56 34.63 51.86 28.61 219.9
64 0.2 0.5 5 22.47 1.96 47.38 26.29 196.2
1024 0.2 0.5 5 22.36 0.11 42.79 23.91 187.7
16 0.475 0.5 5 20.35 2.15 23.77 17.46 56.7
64 0.475 0.5 5 20.32 0.51 23.40 17.27 52.7
1024 0.475 0.5 5 20.23 0.029 22.51 16.81 48.6
4 0.01 0.2 5 25.25 437.42 86.86 44.06 593.2
16 0.01 0.2 5 25.21 105.30 83.67 42.47 563.8
64 0.01 0.2 5 25.17 25.27 80.45 40.85 542.4
4 0.04 0.2 5 23.68 96.00 74.49 38.76 315.8
64 0.04 0.2 5 23.60 5.51 68.75 35.87 287.7
1024 0.04 0.2 5 23.51 0.31 62.88 32.91 257.1
4 0.08 0.2 5 22.78 42.50 63.43 34.36 234.5
64 0.08 0.2 5 22.70 2.43 58.72 31.97 211.9
1024 0.08 0.2 5 22.61 0.14 53.90 29.53 198.4
64 0.19 0.2 5 20.67 0.66 30.45 21.10 82.9
256 0.19 0.2 5 20.64 0.16 30.06 20.91 79.0

Figure 4. (a) Peak stresses as a function of logarithm of
the normalized loading velocity for several sets of stiffness
and constitutive parameters. The simulated data fall on
linear trends with slopes ranging from 1.08 to 1.2 times
(a� b)/a, with an average of �1.1(a–b)/a, which corre-
spond to the slopes of the thin solid lines. (b) x in (4b) as a
function of (b–a)/a as stiffness k and mass m are held
constant (with k = 0.8kcr and T = 0.5s). The mean value is
shown by the solid line, and the dotted lines bracket the
mean ±2 times the standard deviation.
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somewhat greater than that of a constant state line, implying
further strengthening by a small amount.

3.2. Quasi-Static Stress Drop and Inception of
Dynamic Instability

[15] After the peak stress has been attained, the slip
velocity increases monotonically while the shear stress
drops quasi-statically (from point A to B in Figure 2).
According to Rice and Tse [1986], the sliding behavior at
this stage can be analyzed by neglecting inertia and assum-
ing V � V0. For the slowness law, Ranjith and Rice [1999,
equation (36)] recently obtained an analytic expression for
the trajectory of the quasi-static stress drop in the phase
plane that can be written as

V

V*

 ! b�að Þ
b

¼ kcr

kcr � kð Þ exp �
t� sm

*

� �
sb

8<
:

9=
;

þUakcr

bk
exp �

ðt� sm
*
Þ

sb

(
1þ kcr � kð Þb

ka

� �)
; ð5aÞ

and for the slip law, Gu et al. [1984] derived the following
trajectory

b� að Þ
a

ln
V

V*

 !
¼ kb

kcra
�

t� sm
*

� �
sa

þ P exp � t
sa

kcr

k

� �� �
:

ð5bÞ

Appropriate values of the constants U and P are chosen to
satisfy the initial conditions. Of interest here are the unstable
trajectories, which correspond to positive values of U and P.
We compare in Figure 5 these trajectories for the two
evolution laws using identical constitutive parameters. It can
be seen that the trajectories corresponding to (5a) and (5b) are
quite different. For the slip law, a relatively small stress drop
occurs quasi-statically since the slip velocity accelerates
rapidly (Figure 5b). In contrast, a significant stress drop
occurs in the case of the slowness law, for which the quasi-
static stress drop is approximately proportional to change in
ln V (Figure 5a). This qualitative difference is reproduced in
dynamic simulations of stick-slip cycles, manifested by
difference (2b) discussed in the previous section.
[16] That the quasi-static stress drop persists in a

system obeying the slowness law is due to the relatively
strong resilience of such a system to the development of
dynamic instability. A related phenomenon was also
noted by Ranjith and Rice [1999] in connection with the
stability of such a system in response to perturbations in
stress or loading velocity. A spring-slider system obeying
the slowness law is extremely resilient to perturbations in
the sense that dynamic instability is always inhibited, no
matter how large a perturbation is imposed as long as the
stiffness exceeds the critical value (k > kcr). In contrast,
instability may arise for sufficiently large perturbations in a
system obeying the slip law even if the stiffness exceeds the
critical value [Gu et al., 1984]. A reviewer also pointed out
that if we used Nakatani’s [2001] concept using the
parameter s(m

*
+ bln(q/q

*
)) as a proxy for the strength,

then a more explicit explanation is possible if we consider

the evolution of this proxy with slip for the two different
friction laws.

4. Scaling of Stress Drops With Loading
Velocity and Recurrence Time

4.1. A Spring-Slider System Obeying the Slip Law

[17] The difference in quasi-static drop behavior has
implications on the scaling of dynamic and static stress
drops. We will first discuss the scaling relations for a system
obeying the slip law, for which it has been found that static
stress drop is related to the loading velocity and velocity-
weakening parameter

�ts
b� að Þs ¼ C � V ln Vo=V*

� �
ð6Þ

where V 
 2.0 and C is a parameter that increases with
decreasing stiffness and is independent of loading velocity

Figure 5. (a) Trajectories for a system obeying the (a)
slowness law and (b) slip law when V0 
 V (the stationary
load point case with k = 0.8kcr and b/a = 2) corresponding to
(5a) and (5b), respectively.
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[Gu and Wong, 1991]. As noted above, the dynamic stress
drop follows the scaling relation (4b) and the peak stress
attained in a stick-slip cycle follows the scaling relation
(4a).
[18] While Gu and Wong [1991] empirically obtained

these relatively simple relations, they failed to come up with
a simple mechanical interpretation. With insights gained
from our new simulations, we derived analytic approxima-
tions for the stress drops that elucidate their dependence on
loading velocity, stiffness, and friction constitutive para-
meters. The mathematical details are presented in Appendix
A, and here we summarize the key results.
[19] There are two primary reasons that these simple

scaling relations apply to a system obeying the slip law.
First, since the quasi-static stress drop is relatively small
before the onset of dynamic instability (Figure 2), the quasi-
static stress drop can be neglected, and energetic balance
can be used to establish the dependence of the dynamic and
static stress drops on the loading velocity and stiffness.
Second, the mathematical form of the slip law is such that
simple scaling relation exists between the phase trajectory
and lnVo during quasi-static sliding [Gu et al., 1984]. Since
the peak stress tmax is attained during the quasi-static phase,
it should also follow this scaling relation.
[20] Reanalyzing Gu and Wong’s [1991] simulations, it

was found that during the accelerating phase of dynamic
instability the slip velocity attains a maximum value that is
independent of the loading velocity (but dependent on the
spring stiffness, slider mass, and velocity-weakening
parameter). This maximum velocity will be denoted by VL

following the study of Rice and Tse [1986], who also noted
that the stress tL at the termination of the dynamic stress
drop is approximately given by the frictional strength for
steady state sliding, namely tL 
 sm

*
� s(b � a)ln(VL/V*

).
Neglecting the quasi-static stress drop, the dynamic stress
drop is then given by �td = tmax � tL 
 s(b � a) (lnVL �
lnVo), which is analogous to (4b) with C0 = ln(VL/V*

).
[21] During the dynamic slip phase the elastic spring

releases strain energy, while dynamic motion of the block
is associated with kinetic energy change. In addition,
frictional sliding along the surface dissipates an amount
of energy equal to

R
tdd integrated over the total dynamic

slip. This third energy term can be considered as made up of
two parts: the dissipation of energy due to frictional slip at
the ‘‘residual’’ level tL (equal to the product of tL and the
total dynamic slip) and an additional component G =

R
(t �

tL)dd associated with the dynamic stress drop. In analogy
with the slip-weakening models of shear zone and fracture
propagation [Rice, 1980; Wong, 1982], we will refer to G as
the ‘‘effective fracture energy.’’
[22] If the effective fracture energy G is relatively small,

then the energetic balance among the elastic energy, kinetic
energy and frictional dissipation requires that total stress
drop be partitioned equally between the dynamic stress drop
and dynamic overshoot [Rice and Tse, 1986], and therefore
the static stress drop (equal to the sum of the dynamic stress
drop and overshoot) is simply given by �ts = 2�td 
 2s(b
� a) (lnVL � lnVo), which is analogous to (6) with C =
2ln(VL/V*

).
[23] A comprehensive series of numerical simulations for

a system obeying the slip law were conducted by Gu and
Wong [1991], who compiled all their data on stress drops as

functions of loading velocity. However, since they did not
include data on maximum velocity and recurrence time, we
have included their data in Table 2 for comparison with the
analytic approximations. Since they observed that the
scaling relations do not seem to apply for constitutive
parameters with (b � a)/a < 0.2, we have excluded these
data in Table 2.
[24] In Appendix A, we also show that energetic con-

siderations allow us to derive analytic estimates of the
maximum velocity in terms of the mechanical and con-
stitutive parameters for the slip law. To a first approxima-
tion the maximum velocity VL (and consequently the
parameters C = 2C0 = 2ln(VL/V*

)) are independent of the
loading velocity Vo, and can be evaluated using (A8):
ln VL=V*

� �
¼�ln ffiffiffiffiffiffi

mk
p

V*= s b� að Þð Þ
h i

þln �ln
ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h in o
. It

is of interest to note that the dimensionless parameter in
the analytic approximation can be expressed as

ffiffiffiffiffiffi
mk

p
V*=

s b� að Þð Þ ¼ k=kcrð Þ T=2pð Þ=ðDc=V*Þ, indicating that the
stress drops arise from the interplay of the stiffness as well
as the dynamic and quasi-static timescales.
[25] In Table 2, we analytically estimate the static stress

drop using two different approaches. In the first column
(described as ‘‘analytic 1’’), the stress drop was calculated
using �ts/[s(b � a)] = 2 [ln(VL) � ln(Vo)] with the
maximum velocity values from Gu and Wong’s [1991]
simulations. In the second column (described as ‘‘analytic
2’’) the stress drop was estimated using (A7) and (A8) using
input values of the mass, stiffness and friction constitutive
parameters. These two estimates are in satisfactory agree-
ment with the stress drop values from the numerical
simulations.
[26] The stress drops are related to loading velocity as

well as recurrence time. In a spring-slider model, the
system is loaded by the elastic spring at a constant velocity
Vo during a stick-slip cycle that recurs over a time interval of
�t. Nearly all of the recurrence time is taken up by the
‘‘stick’’ phase, during which the spring has accumulated a
displacement of �d 
 Vo�t, that corresponds to an elastic
stress surplus of k�d 
 kVo�t. This surplus is released by
frictional slip during the ‘‘slip’’ phase, with strength
degradation given by the static stress drop �ts. Equating
the stress surplus in the spring to static stress drop, the
loading velocity and recurrence time are therefore related by
Vo = (�ts/k)�t�1. If influence of loading velocity on the
static stress drop is of second order, then Vo / �t�1. As
elaborated by Beeler et al. [2001], this relation is quite
general and seems to apply to a wide range of constitutive
behavior.
[27] In Appendix A, we also show that if the influence of

loading velocity is taken into account, then we have a
scaling relation for the static stress drop in the form of
�ts/[s(b � a)] = ln(k/(4m)) + 2ln�t. Analytic estimates of
the static stress drops using this expression are also included
as the last column (described as ‘‘analytic 3’’) in Table 2.
They are in satisfactory agreement with numerically
calculated stress drops.

4.2. A Spring-Slider System Obeying the Slowness Law

[28] We next consider the scaling relations for a system
obeying the slowness law. The possibility of stationary
contact and strengthening allows such a system to be more
resilient to the initiation of dynamic runaway, and as a result
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the frictional strength attains a higher peak before stress
begins to drop and even then it persists to drop in a quasi-
static manner for quite a while. Consequently, the scaling of
the peak stress (4a) is more complicated for the slowness
law and the energetic contribution from quasi-static stress
drop cannot be neglected as in the analysis of the slip law.
[29] This complication is also manifested by the relation

between static stress drop and recurrence time. In the
previous section, we show that if the quasi-static stress drop
is negligible then �ts = kVo�t. In Figure 6, we plot our
simulation data for the static stress drop versus the product
of the loading velocity and recurrence time. It can be seen
that except when the stiffness is relatively low, the
simulation data deviates from this linear relationship,
indicating that the quasi-static contribution cannot be
neglected.
[30] To account for the quasi-static stress drop, we

observe that its trajectory is approximately linear in the
phase plane (Figures 2 and 5a) and we can derive an
analytic approximation for the dynamic stress drop based
on this feature. The mathematical details are presented in
Appendix B . With reference to (4b), the two scaling
parameters can be expressed as x = g � h and C0 = D0 +
ln(VL/V*

), where g is one of the scaling parameters for peak
stress in (4a) and D0 is related to the other parameter D, and
h = (k/kcr)/(k/kcr + (b/a)(1 � k/kcr)). Unlike the slip law case,
we cannot analytically derive explicit approximation for VL.
[31] For the slowness law, our simulations show that

the effective fracture energy is generally not negligible
(Table 1). The dynamic overshoot �tos is smaller than

the dynamic stress drop and can be approximated as
�tos ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k=kf

p
�td , where the parameter kf 
 bs/DC

(Figure 7). The parameters in relation (6) are given by
C ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k=kf

p� �
D0 þ ln VL=V*

� �h i
and V ¼ g� hð Þ 1þð

Table 2. Numerical Simulation Data Obtained by Gu and Wong [1991]a

Vo

V*

kDc

sa
b�að Þ
a

M
Mo

b ln
�

VL

V*

� �tV*
Dc

��s
s b�að Þ Analytic (1) Analytic (2) Analytic (3)

0.001 0.8 1 1 21.97 74793.00 53.77 57.75 57.10 58.04
0.001 0.8 1.2 1 22.21 91494.00 57.60 58.23 57.48 58.44
0.1 0.2 0.25 1 20.90 645.80 47.84 46.41 46.42 47.15
0.5 0.8 1 1 21.69 116.68 43.30 44.76 44.67 45.11
1.5 0.05 1 1 23.39 719.27 53.79 45.97 45.39 45.97
1.5 0.267 1 1 22.35 121.87 47.64 43.89 43.63 44.10
1.5 0.667 1 1 21.75 45.18 42.19 42.69 42.66 43.03
1.5 0.727 1 1 21.72 41.24 42.07 42.63 42.57 42.93
1.5 0.8 0.82 1 21.17 28.36 36.49 41.53 42.05 42.28
1.5 0.8 0.9 1 21.44 32.47 39.33 42.08 42.25 42.55
1.5 0.8 1 1 21.63 37.07 40.90 42.45 42.47 42.82
1.5 0.8 1 10,000 16.70 28.91 31.29 32.59 32.69 33.11
1.5 0.8 1 0.5 21.99 37.69 41.55 43.17 43.20 43.54
1.5 0.8 1 0.1 22.85 39.31 43.46 44.89 44.89 45.24
1.5 0.8 1.1 1 21.77 41.31 41.92 42.73 42.67 43.03
1.5 0.8 1.2 1 21.89 45.40 42.54 42.96 42.85 43.22
1.5 0.8 10 1 24.25 412.76 51.00 47.69 47.31 47.64
8 0.2 0.25 1 20.65 6.85 39.72 37.14 37.66 38.05
10 0.8 1 1 21.52 5.09 36.90 38.43 38.68 38.84
10 0.8 1.2 1 21.78 6.21 38.55 38.96 39.06 39.24
20 0.8 1 1 21.48 2.44 35.50 36.96 37.29 37.37
30 0.8 1 1 21.45 1.59 34.80 36.09 36.48 36.52
60 0.8 1 1 21.40 0.76 33.09 34.61 35.09 35.04
100 0.16 0.2 1 20.45 0.51 36.09 31.68 32.37 32.62
100 0.2 0.25 1 20.56 0.48 34.36 31.91 32.61 32.74
100 0.8 1 1 21.37 0.44 32.10 33.52 34.07 33.95
100 0.8 1 10,000 16.35 0.32 22.33 23.49 24.30 24.10
100 0.8 1.2 1 21.64 0.55 33.73 34.07 34.45 34.39
100 0.8 3 1 22.74 1.46 38.05 36.27 36.38 36.35
100 8 10 1 22.67 0.47 35.61 36.13 36.49 36.38
150 0.8 1 1 21.33 0.29 31.36 32.64 33.26 33.11
3000 0.8 1 1 21.07 0.01 24.91 26.13 27.27 26.38

aThe last three columns are analytical approximations for the normalized static stress drop derived in this study.
bM = mV*

2/(Dcsa) and Mo = 6.9876 � 10�17.

Figure 6. Static stress drops plotted against kV0�t. Data
for relatively small stiffnesses fit the relation �t = kV0�t,
while data for relatively large stiffnesses deviate from this
linear relation.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k=kf

p
Þ. We note that if D0 
 0, g 
 1, and k ! 0, this

scaling of static stress drop for the slowness law is identical
to that for the slip law.
[32] Numerical simulations also show a linear relation

between static stress drop and logarithm of recurrence
time, namely, �ts/[s(b � a)] = E + V0ln�t, similar to the
slip law case. The coefficient V0 is found to be very close to V
in (6) for the slowness law (Figure 8). This means that
approximately Vo / �t�1 as in the slip law case. In this
way, an approximation can also be made by
V0 
 g� hð Þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k=kf

p� �
.

5. Discussion

[33] In this study we investigate the nonlinear dynamics
of stick-slip in a spring-slider system, focusing on the
interplay of elastic loading, friction constitutive relation,
and inertia. A key conclusion is that while the details of the
partitioning of stress drop between quasi-static and dynamic
slips, as well as dynamic overshoot and strength recovery
may vary according to the particular evolution law adopted
for frictional sliding, the overall stress drops seem to always
scale with the loading velocity (and the recurrence time)
through the velocity-weakening parameter b � a and
normal stress in accordance with (4b) and (6). This type of
scaling was empirically established by Gu and Wong’s
[1991] numerical simulations for the slip law, as well as by
Beeler et al. [2001] who presented preliminary simulations
for the slowness law. Here we conduct more systematic
simulations that corroborate these preliminary results for the
slowness law.
[34] Our simulation data do not support Marone’s [1998]

postulate that stress drops should scale with the loading
velocity and recurrence time through the parameter b
instead. While his postulate was motivated by a quasi-static

approximation that fails to account for strength recovery
during all the phases of an earthquake cycle, our simulations
are based on a model that rigorously accounts for inertia and
has well-defined boundary conditions and limit cycles. We
will discuss first the mechanical interpretation of the
dynamical behaviors and their relations to the friction law,
and then the seismological implications.

5.1. Mechanical Interpretation of the
Nonlinear Dynamics and Scaling Relations

[35] An important feature of a rate- and state-dependent
friction law is that it captures the time-dependent healing of
the frictional strength. In the context of a stick-slip cycle,
this feature allows for the strengthening from the minimum
to the maximum friction during the ‘‘stick’’ phase. The two
evolution laws analyzed here differ in how they model the
healing process in the limit of vanishing slip velocity. Our
study underscores how these subtle differences result in
qualitatively different responses in the peak stress, quasi-
static stress drop and dynamic instability during a stick-slip
cycle.
[36] If the frictional surface evolves according to the

slowness law, truly stationary contact with zero velocity
can be attained. As illustrated in Figure 2, the velocity
decreases by a factor of up to e40 (i.e., 17 orders of
magnitude) during the ‘‘stick’’ phase. The healing at very
low velocities seems to be more effective in strengthening
the frictional surface. While the mechanics of the spring-
slider system constrains the peak stress in a stick-slip cycle
to be attained when V = Vo, tmax for the slowness law case
(4a) is significantly higher than that in the slip law case
(which corresponds approximately to the steady state
friction at Vo).
[37] As elucidated by Ranjith and Rice [1999], a system

that obeys the slowness law is more resilient to the inception
of dynamic instability, and our simulations demonstrate that
this also results in the quasi-static stress drop being
significantly higher. In contrast, the quasi-static stress drop
in the slip law case is negligible and further simplifies the

Figure 7. A simplified model showing the relation
between static and dynamic stress drops constrained by
energy balance. Energetic balance requires that the areas of
the upper and lower triangles should be the same.

Figure 8. Coefficients V0 versus V in the relation �t/[s(b–
a)] = E + V0ln�t and (6), respectively. From linear
regression, V0 = 0.966V (indicated by the solid line). For
reference, the line V0 = V is also included as the dashed line.
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dynamics. The simpler behavior in this case allows us to
analytically approximate the mechanical interaction and
energetic balance in a spring-slider system, and explicitly
demonstrate in Appendix A how the velocity-weakening
parameter b � a enters into the scaling relations (A7) and
(A10) for a system obeying the slip law.
[38] While the slowness law introduces additional com-

plications, the analytic approximations presented in Appen-
dix B help quantify their influences on stress drops. After
the peak stress has been attained and before inertia becomes
important, such a system can sustain a pronounced stress
drop while the slider slips quasi-statically (Figures 2 and 3).
As a result the dynamic stress drop is relatively small, and
its sensitivity to loading velocity is characterized by param-
eter g� h (A13). Physically it represents the trade-off
between the time-dependent strengthening enhanced by
stationary contact (represented by g in (4a)) and the
quasi-static contribution to stress drop (represented by h
in (A11)). Our simulations show that g � h � 1, which
agrees with the contention of Beeler et al. [2001] that the
sensitivity of dynamic stress drop to ln Vo (and recurrence
time �t) may be weaker than s(b � a), but cannot be as
strong as sb, which Marone [1998] suggested. Similarly,
(A15) and (A16) imply that the sensitivity of the static stress
drop may be weaker than 2s(b � a).
[39] Our study shows that even though the dynamics is

nonlinear, systematic numerical simulations can provide
useful insights. It may not be advisable for the sake of
mathematical convenience to resort to quasi-static approx-
imation and heuristic choice of loading paths to mimic the
dynamics, especially since the nonlinear response is
known to be sensitive to subtle changes in the loading
path. In this study we have focused on the dynamical
behavior under constant normal stress. Both the slip and
slowness laws can be extended to explicitly describe the
effect of normal stress [Linker and Dieterich, 1992;
Dieterich and Linker, 1992]. Focusing on the slip law, He
and Ma [1997] and He et al. [1998] have analyzed the
dynamical behavior of a spring-slider system under variable
normal stress, which has notable differences with the
constant normal stress scenario. It is of interest to conduct in
the future a parallel study of the behavior of such a system
that obeys the slowness law.

5.2. Seismological Implications

[40] Both rock mechanics and seismological observations
have indicated that stress drops increase with decreasing
loading velocity. Some of the first systematic observations
in the laboratory were reported by Wong and Zhao [1990],
who conducted triaxial compression experiments on saw-
cut samples sandwiched with ultrafine quartz gouge.
Qualitatively similar results were recently reported by
Karner and Marone [2000] using a biaxial configuration.
Using the scaling relation (A7) for the slip law, Gu and
Wong [1991] showed that Wong and Zhao’s [1990] data on
stick-slip amplitude as a function of loading velocity can be
interpreted using b� a values ranging from 0.001 to 0.004,
which are comparable to quasi-static measurements in
the laboratory. Our simulations here would indicate that the
inferred values b� a should be somewhat higher if the
slowness law were used to analyze the same data set. While
it is of interest to conduct such an analysis, it would require

specific values of additional mechanical parameters of the
test machine.
[41] The laboratory data have often been cited to explain

why stress drop is found to increase with recurrence interval
for some large crustal earthquakes [Scholz, 1990]. These
seismological observations [Kanamori and Allen, 1986;
Scholz et al., 1986] suggest that the relative change in static
stress drop is large (�3 MPa/decade change of recurrence
time). Comparable estimates were obtained from more
recent studies of stress drop for recurring small earthquakes
along the Calaveras fault in Northern California, and
repeating events at Parkfield [Nadeau and McEvilly, 1999;
Vidale et al., 1994].
[42] The comparison between seismological and labora-

tory data assumes that the room temperature data can be
applied directly to frictional sliding at elevated pressures
and temperatures at seismogenic depths. Limitations intrin-
sic to the laboratory and seismological data were reviewed
by Beeler et al. [2001]. Using scaling relations similar to
what we obtain in this study, they considered an example for
which d�ts/dln�t 
 1.37s(b � a) with b � a = 0.002
(comparable to room temperature laboratory values) and
effective normal stress of 18 MPa/km. Beeler et al. [2001]
concluded that the inferred increase in static stress drop with
recurrence ranges from 0.57 to 1.70 MPa/decade, which is
toward the low end of seismological estimates.
[43] The implication is therefore that the seismological

observations of stress drop increasing with recurrence time
cannot be explained by room temperature laboratory
mechanisms alone. Similar suggestion have previously
been made [Scholz et al., 1986; Scholz, 1990; Gu and
Wong, 1991]. Additional healing mechanisms which may
be operative at hydrothermal conditions at seismogenic
depths can possibly contribute to the apparent discrepancy
between seismic and laboratory data. Deeper understanding
of this question would require more systematic investiga-
tions of fault strength and frictional behavior under
elevated temperatures in the presence of chemically
reactive fluids.

6. Conclusion

[44] In the above we presented both numerical and
analytical analyses of the behavior of a single degree of
freedom spring-slider system that obeys either one of two
rate- and state-dependent friction laws. The numerical
analyses are mainly focused on the ‘‘slowness law’’ while
comparing it with the better-known and mathematically less
complicated ‘‘slip law.’’ Before summarizing the results, it
should be noted that as far as small perturbations around a
certain steady state are concerned, responses for the two
laws tend to get close to each other asymptotically as the
perturbations decrease. This can be seen from the common
critical stiffness obtained by linear analysis for a spring-
slider system with the two friction laws [Ruina, 1983]. With
this and other common features as mentioned in the
Introduction in mind, we explored the common features
and differences between nonlinear dynamical behaviors due
to the two friction laws, and the results are summarized as
follows:
1. We have derived explicit analytical approximations for

the scaling of stress drop with loading rate, recurrence time,
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and friction constitutive parameters for the slip law. The
analytic approximations elucidate the control of dynamics,
energetics, and frictional behavior on the scaling of stress
drops. Similarly for the slowness law which has more
complicated behavior, we have obtained implicit relations
that clarify the stress drop scaling.
2. As a common feature, systems with both the slip law

and slowness law show a negative linear relation between
stress drops and logarithm of loading velocity, with
coefficients proportional to the velocity-weakening para-
meter b� a. The sensitivity of stress drop to loading
velocity is lower for the slowness law.
3. Another common feature is that static stress drop

increases linearly with logarithm of recurrence time.
4. While a system with the slip law has peak stress very

close to the steady state value corresponding to the loading
rate, systems with the slowness law have higher peak stress
that scales with loading velocity.
5. For systems that obey the slowness law, stiffness has a

strong effect on the sensitivity of stress drop to loading rate.
A larger value of stiffness k corresponds to a lower
sensitivity. The scaling relations are also complicated
because the effective fracture energy cannot be neglected.
For a case as k! 0 , the sensitivity of stress drop to loading
rate tends to be the same as the slip law.
6. The most remarkable difference between the two

friction laws is the development of healing. For the slip law,
the state variable recovers mainly during the loading phase,
whereas in a system obeying the slowness law the state
variable regains most of its value during the early stage of
the ‘‘stick’’ phase, when velocity attains a much lower value
(decreasing about 17 orders of magnitude) than in the slip
law.

Appendix A: Scaling Relations for the Slip Law

[45] There are two primary reasons that the scaling
relations for stress drops are relatively simple for a system
obeying the slip law. First the quasi-static stress drop is
relatively small before the onset of dynamic instability
(Figure 2). If the quasi-static stress drop can be neglected,
then energetic balance can be conveniently used to establish
the dependence of the dynamic and static stress drops on the
loading velocity and stiffness. Second, the mathematical
form of the slip law is such that a simple scaling relation
exists between the phase trajectory and lnVo during quasi-
static sliding [Gu et al., 1984]. Since the peak stress tmax is
attained during the quasi-static phase, it should also follow
this scaling relation.

A1. Energetic Balance During Dynamic Instability

[46] During dynamic instability, the velocity increases to
a maximum value VL (at the point C indicated in Figure 2)
with a corresponding stress value of tL. For the slip law
case the quasi-static stress drop is sufficiently small that we
can neglect it, and therefore as a first approximation the
dynamic stress drop is simply given by �td = tmax � tL,
which is accompanied by the release of potential energy
(�td)

2/(2k) = (tmax � tL)
2/(2k) in the spring. Since the

kinetic energy during quasi-static sliding can be neglected,
energetic balance requires that the potential energy is
transformed to the kinetic energy mVL

2/2 possessed by the

block at the end of the dynamic instability. Equating the two
energies, we arrive at

�td ¼ tmax � tL ¼
ffiffiffiffiffiffi
mk

p
VL: ðA1Þ

After the maximum velocity has been attained, the slip
decelerates and further overshoot in stress drop occurs. If
the effective fracture energy is sufficiently small that it can
be neglected, then the static stress drop is simply twice the
dynamic value [Rice, 1983]

�ts ¼ 2�td ¼ 2 tmax � tLð Þ ¼ 2
ffiffiffiffiffiffi
mk

p
VL: ðA2Þ

[47] To establish the scaling relations for the stress drops,
we need to analyze the dependence of tmax, tL and VL on
the loading velocity Vo and recurrence time �t. For the slip
law an elegant result obtained by Gu et al. [1984] can be
used to analyze the peak stress tmax. Considering the
solution to quasi-static sliding in terms of the dimensionless
parameters f, f, T and l (with f = (t � t

*
)/(sa), f = ln(V/

V
*
), T = V

*
t/Dc and l = (b � a)/a), Gu et al. [1984] showed

that the following scaling rule applies: if f1(T ) and f1(T ) are
solutions corresponding to a loading velocity Vo, then f =
f1(sT ) � (b � a)/alns and f = f1(sT ) + ln s is a solution
corresponding to the loading velocity sVo. This scaling rule
implies that the quasi-static trajectory for load point Vo will
coincide with that for sVo if we translate the former along a
direction parallel to the steady state line (with horizontal
shift of ln s and vertical shift of �lln s). This behavior is
illustrated by Gu and Wong [1991, Figure 4a].
[48] Since the maximum stress is attained during quasi-

static sliding, it also follows from this scaling rule that tmax

attained at a faster loading velocity of sVo is lower than that at
Vo by the amount s(b � a)lns. In other words, the peak
stress tmax should follow the scaling relation (tmax � sm

*
)/

[s(b � a)] = D � ln(Vo/V*
) which was empirically

determined by Gu and Wong [1991]. As illustrated by Gu
and Wong [1991, Figure 9] (as well as by Rice and Tse
[1986, Figure 3a]), the value of D is relatively small such
that the peak stress is located in the proximity of the steady
state line. Hence to a first approximation D 
 0 and the peak
stress is simply given by tmax = sm

*
� s(b � a)ln(Vo/V*

).
[49] It has also been noted in previous studies that the

dynamic instability ends when the phase trajectory inter-
cepts the steady state line [Rice and Tse, 1986], which
implies that the stress drops dynamically to the steady state
frictional stress value corresponding to the maximum
velocity VL, namely tL = sm

*
� s(b � a)ln(VL/V*

) (Figure
2). In other words, the stress drops can be approximated by

�ts ¼ 2�td ¼ 2 tmax � tLð Þ ¼ 2s b� að Þ lnVL � lnVoð Þ: ðA3Þ

A2. Analytic Approximation for Scaling Relation
Between Stress Drops and Loading Velocity

[50] To derive an explicit expression for the maximum
velocity, we equate (A2) and (A3) to arrive at

ln
VL

V*

 !
� ln

Vo

V*

 !
¼

ffiffiffiffiffiffi
mk

p
V*

s b� að Þ
VL

V*

 !
: ðA4Þ
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Since significant acceleration occurs during the dynamic
instability we expect that VL � Vo. With reference to Table
2 if we consider a sufficiently narrow range of loading
velocity Vo such that VL � Vo, then the second term on the
left-hand side can be neglected. Therefore, an approximate
solution for the maximum velocity can be obtained by
solving the equation

ln
VL

V*

 !



ffiffiffiffiffiffi
mk

p
V*

s b� að Þ
VL

V*

 !
: ðA5Þ

While this equation can be solved numerically, here
we will derive an analytic approximation that elucidates
the control of inertia and constitutive parameters over VL.
If we introduce the parameter fL = ln(VL/V*

), then (A5)
becomes fL =

ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h i
exp(fL) and we seek

solution in the form of fL ¼ x� ln
ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h i
.

This in turn leads us to solve for x as a solution of
x� ln

ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h i
¼ exp xð Þ. Going over simulation

results of Gu and Wong [1991], we observe that since
the first term is �10% of the second term, we can drop
it and seek an approximate solution of � ln

ffiffiffiffiffiffi
mk

p
V*=

h
s b� að Þð Þ	 ¼ exp xð Þ. Therefore an analytic approxima-
tion for the maximum velocity is given by

ln VL=V*

� �
¼ � ln

ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h i
þ ln � ln

ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h in o
: ðA6Þ

[51] On substituting (A6) into (A3), we arrive at the
scaling relation empirically determined by Gu and Wong
[1991]

�ts
s b� að Þ ¼ C � 2 ln Vo=V*

� �
: ðA7Þ

with the intercept

C 
 2 ln
VL

V*

 !
¼ 2 � ln

ffiffiffiffiffiffi
mk

p
V*

s b� að Þ

" #(
þ ln � ln

ffiffiffiffiffiffi
mk

p
V*

s b� að Þ

" # !)
:

ðA8Þ

[52] In Figure A1, we compare Gu and Wong’s [1991]
numerical data on maximum velocity (Table 2) with analytic
estimates from (A6). It can be seen that the agreement is
reasonable, and that the second term in (A6) is almost
constant: x ¼ ln � ln

ffiffiffiffiffiffi
mk

p
V*= s b� að Þð Þ

h in o

 3. The dynamic

and static stress drops were plotted as functions of loading
velocity by Gu and Wong [1991, Figures 11 and 8,
respectively].

A3. Analytic Approximations for Scaling Relation
Between Stress Drops and Recurrence Time

[53] As Beeler et al. [2001] pointed out, the data of Gu
and Wong [1991] also indicate that the static stress drop for
a system obeying the slip law follows a simple scaling
relation with respect to the recurrence time �t

�ts
s b� að Þ ¼ Aþ 2 ln�t ðA9Þ

This is a manifestation of the strengthening process that is
intrinsic to the rate- and state-dependent friction law. Here
we will obtain analytic approximation of the intercept A in
terms of the mechanical and constitutive parameters of the
system.
[54] Let the total displacement accumulated in the spring

during the ‘‘stick’’ phase be �d. The displacement is
released by frictional slip that occurs predominantly during
the dynamic instability. Again if the effective fracture
energy is negligible, then the stress drop as well as the
dynamic slip is partitioned equally between the dynamic
stress drop and overshoot phases. Using (A1), we therefore
have �d=2 
 �td=k ¼

ffiffiffiffiffiffiffiffiffi
m=k

p
VL. In contrast, the total time

for a stick-slip cycle is used up mostly by the quasi-static
loading at a velocity of Vo. Hence the recurrence time can be
estimated as �t 
 �d=Vo ¼ 2

ffiffiffiffiffiffiffiffiffi
m=k

p
VL=Vo. Substituting into

(A3), we then obtained �ts ¼ 2s b� að Þ ln �t= 2
ffiffiffiffiffiffiffiffiffi
m=k

p� �� �
,

or equivalently

�ts
s b� að Þ ¼ ln

k

4m

� �
þ 2 ln�t: ðA10Þ

Hence the intercept parameter in (A9) can be approximately
by A = ln(k/(4m)).

Appendix B: Scaling Relations for the Slowness
Law

[55] The scenario for a system that obeys the slowness
law is more complicated in two respects. First, even
though the governing equation requires that the peak
stress of a stick-slip cycle be attained at a slip velocity
V = Vo, the stress value is somewhat higher than the steady
state frictional strength. Our simulations show that tmax =
sm

*
+ s(b � a)[D � gln(Vo/V*

)] with g 
 1.1. Second,
appreciable stress drop occurs quasi-statically after the peak
stress has been attained. Unlike the slip law case for which

Figure A1. Logarithm of the normalized maximum
velocity (VL/V*

) as a function of logarithm of the normal-
ized parameter

ffiffiffiffiffiffi
mk

p
V*= s b� að Þ½ 	. The data points are

from Gu and Wong’s [1991] simulations for different ranges
of loading velocity as specified. They are also compiled in
the fifth column of Table 2. The continuous line represents
the analytic approximation (A6).
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this quasi-static stress drop is negligible, it must be
appropriately accounted for in the slowness law case.

B1. Quasi-Static and Dynamic Stress Drops

[56] As illustrated in Figure 2 our simulations for the
slowness law show that in the quasi-static phase (from point
A to B) the trajectory is approximately linear in the phase
plane. Specifically if we consider the normalized parameters
f = (t � t

*
)/(sa) and f = ln(V/V

*
), the slope of this quasi-

static trajectory is approximately given by df/df = �h(b �
a)/a with

h ¼ k=kcr
k=kcr þ b=að Þ 1� k=kcrð Þ : ðA11Þ

It can be seen from Figure 5a that the trajectories for U > 0
are approximately linear with comparable slopes, and our
particular value of �h(b � a)/a in (A11) corresponds to the
limiting value of the derivative df /df calculated using (5a)
at f = 0 as U ! 1. Along this quasi-static trajectory, the
stress t at a given slip velocity V is given by (t � tmax)/(sa)
= �h[(b � a)/a](lnV/Vo).
[57] Since tmax = sm

*
+ s(b � a)[D � gln(Vo/V*

)], we
can obtain an analytic estimate of the quasi-static stress tq
before the onset of dynamic instability at a slip velocity Vq

tq � sm
*

s b� að Þ ¼ D� g� hð Þ ln Vo

V*

 !
� h ln

Vq

V*

 !
ðA12aÞ

Because Vq is the velocity at which point T/2p � Dc/V, Vq

is a constant that depends on Dc, m, and k. Replacing D �
hln(Vq/V*

) with D0, we have

tq � sm
*

s b� að Þ ¼ D0 � g� hð Þ ln Vo

V*

 !
ðA12bÞ

With the onset of dynamic instability the stress drops
abruptly to the value tL, and the dynamic stress drop is
given by �td = tq� tL. As noted above the dynamic
instability ends when the phase trajectory intercepts the
steady state line (Figure 2), which implies that tL = sm

*� s(b� a)ln(VL/V*
). Combining with (A12b), we obtain

�td
s b� að Þ ¼

tq � tL
s b� að Þ ¼ D0 þ ln

VL

V*

 !
� g� hð Þ ln Vo

V*

 !
;

ðA13Þ

in a form similar to (4b). We note that if D0 
 0, g 
 1, and
h 
 0 (corresponding to very small stiffness), (A13) is
identical to (A3) derived for the slip law.
[58] As before, we can use energetic balance to deter-

mine the maximum velocity. Since the dynamic stress
drop releases a potential energy (�td)

2/(2k) = (tq� tL)
2/

(2k) in the spring, energetic balance requires that it is
absorbed in part in fracture and is transformed in part to the
kinetic energy mVL

2/2 possessed by the block at the end of
the dynamic stress drop. From Figure 3, it is seen that most

part of the trajectory during dynamic stress drop is roughly
linear. This suggests that the effective fracture energy may
be estimated as (�td)

2/(2kf) = (tq� tL)
2/(2kf), with an

unloading stiffness kf 
 bs/DC as suggested by Dieterich
[1994] in an earlier analysis. However, this estimate of G is
smaller than the numerical values (compiled in Table 1) by a
factor of about 2 due to our ignoring the contribution of the
nonlinear part. Empirically we have determined that a better
fit is given by G = (tq � tL)

2/(2kfc), where the parameter kfc

 0.426 kf 
 0.426 bs/DC. Considering energetic balance,
we arrive at �td ¼ tq � tL ¼

ffiffiffiffiffiffiffiffiffiffi
mkeff

p
VL, with keff = (kfck)/

(kfc � k). If we combine this with (A13) and follow
arguments similar to those in Appendix A to assume VL �
Vo, then we arrive at

D0 þ ln
VL

V*

 !



ffiffiffiffiffiffiffiffiffiffi
mkeff

p
V*

s b� að Þ
VL

V*

 !
: ðA14Þ

While this equation can be solved numerically, we cannot
analytically derive an explicit approximation for VL in this
case.

B2. Static Stress Drop

[59] For the slowness law, our simulations show that the
effective fracture energy is generally not negligible and the
overshoot is related to the dynamic stress drop by

�tos ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

kf

s
�td : ðA15Þ

where the empirical parameter kf 
 bs/DC (Figure 7). We
note that if k ! 0 then the potential energy is partitioned
equally between the dynamic stress drop and overshoot, but
otherwise the dynamic overshoot is smaller than the
dynamic stress drop (Figures 2 and 3). Using this result
the static stress drop can be estimated as �ts = tq � tL +
�tos, or explicitly as

�ts
s b� að Þ ¼ D0 þ ln

VL

V*

 ! !
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

kf

s( )

� g� hð Þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

kf

s !
ln

Vo

V*

 !
ðA16Þ

in a form similar to (6). We note that if g 
 1 and k ! 0,
sensitivity of stress drop to loading velocity is identical to
that in (A3) derived for the slip law.
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