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ABSTRACT 

Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. 

Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 
211: 115-134. 

Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena 

including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength 

following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that 

accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling 

relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading 

conditions and constitutive parameters which include D,, the characteristic slip distance. If slip starts on a patch that 

exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of 

instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with 

results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time 

to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement 

are proportional to D,, the moment of premonitory slip scales by 02. The scaling of D, is currently an open question. 

Unless 0, for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising 

from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the 

possibility that 0, in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions 

of the smallest earthquakes in a region provide an upper limit for the size of the nucleation patch. 

Introduction 

The processes and interactions that lead to the 
initiation of unstable earthquake fault slip are 
collectively defined here as earthquake nucle- 
ation. This subject bears upon several topics of 
interest for earthquake seismology. In particular, 
earthquake nucleation determines the time of 
occurrence and place of origin of earthquakes. In 
turn, seismicity rates and space-time patterns of 
earthquakes represent selected characteristics of 
populations of nucleation events. Because earth- 
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quake nucleation processes may result in measur- 
able physical changes prior to earthquakes, such 
as premonitory creep, this subject could also be 
of considerable relevance for earthquake predic- 
tion. Finally, nucleation processes might affect 
earthquake rupture propagation and seismic radi- 
ation by altering conditions along the fault prior 
to an earthquake. 

The nucleation of earthquake slip may be in- 
fluenced by several factors including fault consti- 
tutive properties, bulk properties of the rock mass 
in which an earthquake fault is embedded, stress- 
ing history, pore fluid interactions, and geometry 
of the fault-rock mass system. The following 
treatment examines details of the nucleation pro- 
cess on faults with a rate- and state-dependent 
constitutive law for fault slip, subjected to simple 



stressing histories. Heterogeneity of physical con- 
ditions along a fault is also considered. 

This study extends and generalizes the analy- 
ses of Dieterich (1986, 1987) which treat nucle- 
ation in response to constant-rate loading and 
loading with a periodic component. The previous 
studies relied upon numerical solutions of a sim- 
ple spring and slider approximation of fault inter- 
actions. Below, an analytic solution for that prob- 
lem is presented. In addition, the nucleation pro- 
cess is examined in detail with a plane-strain 
numerical model. The numerical model permits 
evaluation of simplifying assumptions used for 
the spring and slider approximation of fault intcr- 
actions 

Constitutive law 

Constitutive laws with rate- and state-depen- 
dence successfully represent the experimental ob- 
servations of ubiquitous velocity-, time-, and dis- 
placement-dependence of fault strength (Di- 
eterich, 1979, 1981a; Ruina, 1983; Weeks and 
Tullis, 1985; Tullis and Weeks, 1986; Okubo and 
Dieterich, 1986; Biegel et al., 1989). In addition 
to representing experimental observations, this 
constitutive approach has the property of gener- 
ating spontaneous slip instabilities under appro- 
priate conditions with subsequent ‘healing’ of the 
fault to recover the loss of strength at the time of 
the instability. Tse and Rice (1986) have applied 
the constitutive law to model the earthquake cy- 
cle on strike slip faults and Stuart (1988) has 
employed it to model great subduction earth- 
quakes in Japan. Conditions governing the onset 
of slip instability in simple spring and slider sys- 
tems have been considered by Dieterich (1978, 
1979, 1981a), Rice and Ruina (19831, Ruina 
(1983), Gu et al. (19841, Blanpied and Tullis 
(1986) and Tullis and Weeks (1986). 

The sliding resistance, 7, divided by normal 
stress, V, defines the coefficient of fault friction, 

CL: 

j_l=r/(T (1) 

Throughout the following, g is assumed to be 
constant. 

Several similar, essentially equivalent, formula- 

tions of rate- and state-dependent fault strength 

have been employed. The previous nucleation 

studies (Dieterich, IYM, IV871 employ 

whcrc. CL,,. ,I. U. II. and !I. :IIC’ ~xpcrimcntolly 

determined parameters and A. r> Si~~tl H arc fault 

slip, slip speed and the state variable. rcspcc. 

tivcly. At $ and 6 well-removed from the rate 

limits (i.e. c;,‘c< .* 1. H/h 2 1 t. c’q .1 simplifies hi. 

Pll .: Pll -- A In (I R In 11 i si) 

‘l‘hc simplified form ot the cclnbtltutlve law I\ 

cquivalcnt to that proposed by Ruina (19X0, 1083) 

and later used by several other mvestigators. III 

cq. 3 the In H term is sometimes rcplaccd b> 

(-) = In 0. Constants A and H typically have ~nl- 

ues in the range 0.005 to 0.010. 

Sliding history effects and consequentlj Jis- 

placement- and time-dependent effects arc reprc. 

sented by the variable 0. Dietcrich (1979) itnd 

Dieterich and Conrad (1984) intctrprct fl ;I\. <I 

measure of the average age of load-supporting 

contacts between sliding surfaces and that con- 

tacts strengthen with age. Because contacts ;irc 

destroyed and created during slir). it is reasoned 

that H depends on the slip histor?. The following 

law for the evolution of H with tlmc or displacc- 

mcnt has been discussed by Kuina (19X0) and 

employed by Dicterich (19Xh): 

dH Hi clH t fI 
- = 1 -- I>. or equivalent -- ; 

11 I tit? n 
4.5) 

Displacement-dependent effects 111 cxpertmenrs 

and in eq. 5 scale by the characteristic slip dis- 

tance, UC. In experiments. the magnitude of 11, 

depends on surface roughness and varies from 

about 3 microns for slip on initially bare, finely 

ground surfaces to a maximum of about 50 mi- 

crons for coarsely ground surfaces separated by ;I 

layer of fault gouge (Dieterich. 1070. lY81a). 

Note from eq. 5 that at steady-state, dO/dt = 0. 

and 0 = U,.,/&. When not at steady-state. 0 tcndb 
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to evolve toward the steady-state value. At con- 
stant 6, eq. 5 has the solution: 

(6) 

where Ba is the value of 0 at 6 = 0. For a fault 
that is locked (6 = 01, de/dt = 1 and 0 increases 
with elapsed time. Because rapid slip and large 
displacements of an earthquake will reset 0 to 
values approaching zero, a fault that has re- 
mained locked since the previous earthquake will 
have 8 approaching the time interval from the 
last earthquake. Note, however, that the constitu- 
tive law as presented in eqs. 2 and 3 does not 
permit zero slip speed. Hence, small displace- 
ments in the interval between instabilities will 
tend to reduce 0 to values somewhat less than 
the elapsed time interval. 

For completeness, it is noted that an alternate 
evolution law has been used in several studies 
(Tse and Rice, 1986; Tullis and Weeks, 1986; 
Stuart, 1988). It may be written as: 

I (7) 

Use of evolution equation 7, in most cases, yields 
results that are similar to results with eq. 5. This 
study employs evolution equation 5, but a few 
comparisons with eq. 7 are made below. 

Two special cases of the constitutive law are 
useful for the following discussion. The first is for 
steady-state sliding. At steady state, substitution 
of, 8 = DC/e, in eq. 2 yields the steady-state fault 
friction in terms of state: 

~,=~._Aln(~+I)+Bln(~+I) (8) 

Similarly, a substitution of 13 = DC/8 gives the 
steady-state fault friction as a function of 8. Un- 
der conditions where a/8 B- 1, 8/b I++ 1, the 
steady-state friction from the simplified friction 
law (eq. 3) is: 

p,=&+A In D,+(B--A) In 8 (9) 
The second case defines 

frictional strength for eq. 3 
s -+ 03: 

the upper limit of 
which occurs when 

(IO) 
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With the simplified form of the constitutive law 

(eq. 3), prnax cannot be defined using C$ + m, 

because any frictional stress can be achieved by 
sliding at a suitable rate. A limiting slip speed, gi, 
for quasi-static slip is employed to define pmax. If 
8 increases to ii, then an instability is assumed to 
be have begun and quasi-static anaIysis is no 
longer appropriate. Hence, the maximum, quasi- 
static limit for the simplified constitutive law is 

~J~~~=&,+A In &+B In 8 (11) 

If ii = a, then p,,,,,, defined in eq. 10 is the same 
value as that defined for eq. 11. 

At stresses between IL, and p,,,,,,, fault slip is 
faster than the steady-state speed. Hence, 0 de- 
creases and, at constant 8, the fault weakens with 
time and displacement. At stresses below ps, the 
slip speed is less than steady state and the fault 
strengthens or ‘heals’. As stress reaches p,,,,,,, 8 
equals ii and unstable sliding commences. 

Dieterich (1979, 1981a, 1986), Koslov and Liu 
(1980) and Gu et al. (1984) show that self-driven 
acceleration of slip speed to instability can occur 
in the stress range CL, < P < pmax (see Fig. 1). 
This study is concerned with the processes and 

00 
In 19 

Fig. 1. Plot of friction coefficient against state, 8. Lines of 
constant slip speed and pLmax, which is defined at & = ii, have 
slope B. The steady-state friction, IL%, has the slope E - A. At 
stresses below psr 0 evolves to the right, increasing the 
strength of the fault at any reference slip speed. At stresses 
above psr f3 evolves to the left, decreasing the strength. Note 

that ~~ and I.+,,~~ change as 13 evolves. The shaded portion of 
the graph schematically represents the region where the sim- 
plifying assumption employed for the simple patch solution, 

discussed below, is valid. 
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interactions that take place in this stress interval, 

where under suitable conditions, slip instability 

may nucleate. In general, for simulati~~n of earth- 

quake processes, 8 will always he very large 

throughout the nucleation process insuring that 

the condition B/b B 1 is satisfied. Also. the con- 

dition a/$ B 1 holds until the stresses approach 

p”,;,. At that point, the slip speeds arc very high 

relative to UJfJ, and the system is essentially at 

instability. Below, analytic solutions for a simple 

nucleation model and detailed plane-strain nu 

merical solutions using simplified constitutivc rc- 

lations (eq. 3) are presented. Comparison with 

numerical solutions using the full constitutivc for- 

mulation (eq. 2) shows the solutions differ only in 

the final moments immediately preceding insta- 

bility and that those diffcrcnces are slight. 

Previous studies of the ~ndit~ns for instabili~ 

Several studies of spring and slider system5 

(Dietcrich, 1979, 1981a; Rice and Kuina. 198.7: 

Ruina, 1983: Gu et al., 1984) have established 

that for an instability to occur, the stiffness (X 

AT/~) of the system must be fess than some 

critical value. k,,,, given by: 

where $ is a parameter that depends upon the 

constitutive parameters and stress state. At stiif- 

ness greater than k Cri,, displacements decrease 

the applied stress sufficiently to move the appliccl 

stress away from prnzlxr terminating the slip acccl- 

cration. A dependence of the tr~~nsiti~n from 

stable sliding to stick slip, of the form given by cq. 

1 ii i)lr.l I Kl(‘li 

I?, has been established cxperrmentally (I>i- 

&rich, 1978). Kuina (1983) and Rice and Ruina 

(1983f show that perturbati~~ns tram steady-stare 

slip will grow to instability for stiffness less than 

the critical \tiffncss whcrc, 

Hence, from cy. 12. the usuitl ~I~rl~liti~Il for insta- 

bility is that fj :> A. which t’orrcsponds to steady- 

state velocity weakening. ‘l‘hc ~aluc ol 4 given i>b 

cq. I3 is :I lower hound. For t’iniLc perturbation5 

Cram p,. instability may OCCUI with stiffness 

greater than that obtained fr-0m 2q. I.2 using tq. 

13 (&cc and Gu. IVHI’), 

An approximate representation of conditions 

required tin onset of slip instahilrty on ;I I’ault 

patch emhcddcti in an elastic medium IS tountl 1~) 

~~~rnbil~ing the spring and sfidcr results with eias- 

ticity solutions for dis~?la~~rneI~K along :t crack 

(Dieterich. I%%). This assumes that propertics 

;~nd conditions at the center ~jt the patch arc 

rcprcscntativc of the cntirc pats h ‘l-he approsi- 

mate etfectt~ \tiffnes5 of ;t f&t patch I\ ,+. 

ti~i~~d from cr-ack solutions relating fault slip ij IO 

5tresb drop .L: : 

whcrc i is the half length (C)I. radius! of the fault 

patch. C; i> the shear modulus (.Poisson‘s ratio 

taken to IX 0.25) and 77 is ;I factor with ‘I caluc 

that depends upon the gcomctr) of the slip putch 

and at\sumptionx relating tct slip or St i’t’sh condi- 

tions on the patch. Table i give* values of 1) ic~i 

sctmc simple patch geometric>. 
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Dieterich (1986) combines the relation for crit- 

ical stiffness for instability (eq. 12) with the rela- 
tion for patch stiffness (eq. 14) to obtain: 

GrlDc 
I, = - 

5u 
(15) 

where 1, is the minimum patch half-length for 
unstable fault slip. Patches with dimensions less 
than 21, will have stiffnesses in excess of kcri, and 
sliding will always be stable. Equation 15 implies 
a lower bound for the dimensions of the earth- 
quake source. Examination of stick-slip events 
along a 2-m fault provided an approximate exper- 
imental verification of this relationship (Di- 
eterich, 1981bI. In that study, stick-slip events, 
confined to the interior of the fault were ob- 
served, and the dimensions of the unstable fault 
patch always exceeded the approximate minimum 
size predicted for the conditions of the experi- 
ment. 

Simple patch model 

The simplified nucleation model consists of a 
fault patch embedded in an elastic body. The 
patch dimensions are fixed and conditions along 
the fault are represented by the center-point val- 
ues. Stress acting on the patch is controlled by 
remote displacements and by slip on the patch. 
Remote stressing (e.g. tectonic loading, earth tides 
or stress transfer by slip elsewhere on the fault) 
results in a stress change on the patch in the 
absence of slip on the patch. The patch has 
dimensions equal to or in excess of 21, as given 
by eq. 15 and has an effective stiffness k, from 
eq. 14. 

Equating the constitutive law (eq. 3) with fault 
stress gives: 

7(t) -k6 

u 
=&+A In 9+B In 8 

where 7(t) is the remotely applied stress acting 
on the fault in the absence of slip and - k6 is the 
decrease in stress due to fault slip. Using eq. 16 
with the evolution law for 0, the problem may be 
solved numerically. 

However, when the nucleation process is un- 
der way and slip is accelerating, the slip speed is 

much greater than the steady-state speed (6 z=- 

DC/d). Under these conditions (8 B DC/d), the 
l/g term in eq. 5 does not contribute to the 

evolution and eq. 5 reduces to: 

de e 

z=-e e = 0 e-S/De 
0 (17) 

Hence, under these conditions, 8 evolves toward 
an ever diminishing steady state (0 = DC/g) that 
is effectively zero compared to the current 8 and 
the evolution becomes independent of slip speed. 
This condition holds once the nucleation process 
is under way, as the slip undergoes acceleration 
to instability. The following analysis employs the 
approximate relationship 17 for evolution of 0. 
Conditions under which this approximation is ap- 
propriate are discussed in greater detail below. 

Substitution of eq. 17 into eq. 16 yields: 

7(t) -kc? 
=&+A In ti+B In 8,,--g (18) 

V c 

A variety of functions for the remote stressing, 
7(f), result in a separable differential equation 
that may be solved directly. For the simple case 
of constant rate of remote loading, 7(t) = T() + it, 

(eq. 18) yields: 

C[)‘exp(c) dt={:exp(F) da (19) 

where C and H contain terms for the initial 
conditions and model constants, respectively: 

H=$-” 
c w 

(21) 

Note in eq. 20 that C is found to be the initial 
slip speed, &. Equation 19 has the following 
solutions: 

fY=$ln(T[I-exp(g)]+I); i+O 

(22) 
-A 

a=- 
H 

i=o (23) 
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The slip speeds are: 

The time of instability, t,. is obtained by suh- 
stituting &, the assumed slip speed at the start of 
instability, into eqs. 24 and 25: 

(27) 

In turn, expressions for the total displacement at 
the time of instability may be obtained by substi- 
tuting ti into eqs. 22 and 23. State 0, at ti is then 
obtained from the total displacement using cq. 
17. 

If the stiffness of the patch is sufficiently high. 
then the rate of stress decrease due to slip will 
result in decelerating slip. In the p vs. In H plane. 
lines of constant slip speed have the slope 13. 
Hence, slip will accelerate if: 

dp 
-<B 
d In 0 

(2X) 

See Figure 1. The derivative, dw/d InO, is found 
from the solutions for displacement with eq. 1%. 
Equating dpu/d InH to B gives the patch stiffness 
that results in constant slip speed: 

k,,,, = ; + ; 
‘ 

(29) 

Slip will accelerate for stiffnesses less than k,,,,. 

In eq. 29, if i = 0, or if C is large compared to f 
(large &), then kc,,[ = Ba/D, (i.e. < =L?). Note 

that parameter A does not appear, and that 
acceleration to instability may occur on faults 
with a positive steady-state slip speed depen- 
dence (A - B > 0). However, the displacement 
during unstable slip may be quite small, because 

H will soon evolve to steady-state, velocity 
strengthening, which will stabilize the slip. 

These results alone are inslrfficient to deter- 
mine if an instability will nucleate. In particular. 
the condition required for rhr% solution. 8 25 
!)<,/A, may he satisfied initially. l~f evotution due 
to slip may result in this condition later being 
violated. A particular solution may be easily 
checked to insure that it doe5 not violate this 
condition by solving for H, at th:: time of instabil- 
ity and testing to see if it remains large compared 
to Q/is,. 

Numerical model 

The purpose of the numerical model 14 LO 
investigate the nucleation process in more detail 
and without the simplifying constraints imposed 
for the simple patch solutions. Hence? the numer- 
ical model employs the constitutite relations. eqs. 
? or 3 and the full evolution c+. 5 or 7. I hc 
model assumes plane-strain interactions of an 
array of fault dislocations (Fig. LL). The medium is 
homogeneous, elastic and infinite. The fauit iz 
assumed to be initially planar. A section of fault 
is free to slip and beyond the ends of the model, 
the fault is pinned. The modei and preliminary 
results for nucleation were first reported by Di- 
eterich (19%). 

For this study, constitutive pammeters ,+1, B 
and DC are the same at all points on the fault. 

Shear stress, fault slip and H art‘ lree to vary with 

L_ -__.- 
Position 

Fig. 7. Representation of fault slip in numer~al model. The 

fault is divided into discrete segments 01 length s. F‘aulr slip 

on a segment is constant and segments at-r bounded by elastic 

dislocations. Stress at the mid-point of zc:gmcn~ I. due to slip 

on segment j. is found from the elastic dislocationn hounding 

segment j, at distances ~Yl) and ,Y, ,. 
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time and position. Normal stress remains con- 

stant during slip, but each point may be assigned 
different normal stresses to give spatial variation 

of fault strength. 
An array of n equally spaced segments, 

bounded by dislocations, provides a descretized 
representation of slip distribution and stress state 
along the fault patch. Slip along each segment is 
constant. At time t, the stress at node i, located 
at the center of segment i, is given by: 

,ri = 7I’ + it + ATE (301 

where ~0 is the initial stress on the segment at 
time t = 0, i is a constant, remote stressing rate, 
and ATE is the change of stress resulting from 
displacements of the fault nodes. L\T~ is given by 
the system of equations: 

Ari = SijSj, i, j = 1, 2,. . . , n (311 

where eq. 31 employs summation convention and 
Sj is the array of nodal displacements giving total 
fault slip. The n by n array of coefficients relat- 
ing stress to displacement, S,,, is obtained from 
elastic dislocation solutions. For an array of dislo- 
cation segments bounded by edge dislocations in 
an infinite medium: 

%= 2T(;-u) [$-&I (32) 

where G and v are shear modulus and Poisson’s 
ratio, respectively. The terms Xii and Xij_i are 
distances from the center of segment i to the two 
dislocations bounding segment j (see Fig. 2). For 
uniform dislocation spacing, s: 

Xij=s[i-j- l/2] 

Xii = s[i -j + l/2] (33) 

Expressions for anti-plane strain, employing 
screw dislocations at the segment boundaries are 
identical to eq. 32 except that Poisson’s ratio, Y, 
is omitted. Equations for a vertical fault with a 
free surface in anti-plane strain, or faults with a 
mirror symmetry plane perpendicular to the cen- 
ter of the fault, are analogous to eq. 32 except 
that added distance terms are required for the 
image segments. 

A time marching procedure follows the slip of 
each node and evolution of friction up to the time 

that the first segment becomes unstable. Con- 
stant slip speed during a time step is assumed. 
For each time step, the computation finds the slip 

speed at every fault node such that, at the mid- 
point of the time step, the frictional resistance on 

a segment, TV, is equal to the applied stress on 
the segment, 7,. The nodal slip speeds that satisfy 
this condition are simultaneously determined it- 
eratively, using a predictor-corrector method. 
Every iteration begins with a trial $, where k 
indicates the k-th iteration. The first iteration 
begins with T: set equal to the known nodal 
stress at the beginning of the step obtained from 
eq. 31. The trial slip speed, 8&,, that yields a 
frictional resistance equal to T: at the midpoint 
of the step is calculated from the constitutive 
relations. This calculation employs the explicit 
constant 8 solution (eq. 6) of the evolution equa- 
tion to evolve from the known value of 8 at the 
beginning of the step. The nodal stresses at the 
midpoint of the time step, r,“, are then calculated 
from eq. 31 using &ii,, and the step duration At. 

If I 7,” - T,” I 2 Terror, then another iteration is 
performed using T: + ’ = pi. 

This method is numerically stable and easy to 
implement. For the simulations reported here, 
7 errOr = 0.00005~ and the time step solution gen- 
erally converges after 2 iterations. The solutions 
are insensitive to the size of the steps, provided 
AS < 0.10, and provided At < O.SAa/i. 

Results of numerical simulations 

The simulations employ the simplified consti- 
tutive law (eq. 3) with evolution law eq. 5, unless 
specified otherwise. Also, unless specified, the 
stressing rate i is zero and the initial stress at the 
start of the simulation is set above the steady-state 
friction (TO > ~~a) to insure self-driven accelera- 
tion of slip to instability. This is roughly equiva- 
lent to imposing a stress step that moves a previ- 
ously locked fault across the steady-state bound- 
ary and into the field where creep instability 
begins. Several series of simulations were also 
performed with i # 0 permitting the conditions to 
evolve across the steady-state boundary from be- 
low. In all simulations, initial 8, is 10’ s (- 31.7 
years), Poisson’s ratio is 0.25 and G/u = 104. 



Figure 3 illustrates results with uniform initial shear stress and displacement. respectiveIy. The 
conditions and uniform normal stress. The fault time steps are not constant, but decrease .as the 
patch consists of 299 nodes. Figures 3a-3c give slip speed of the fastest node increases. In this 
profiles, at successive time steps, of slip speed, cxampie, cvcry 50th time step is shown. Figure 3d 
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Fig. 3. Numerical model with 299 nodes (nodal spacing of IOO,OOO 0,) and uniform initial conditions. Parameters for the 

calculations are: A = 0.008, B = 0.009, 0 = 10” s, G = lo4 s. i = 0, and initial shear stress 7 = C/-L:, + O.l)rr. tai, Cb). Cc) gee the 

logarithm of slip speed, displacement and shear stress, respectively, as functions of position on fault. Position is scaled by 0,. The 

approximate width of the zone of accelerated slip, 21,, . k obtained from eq. 15 with 5 = 0.48. (d) gives the slip at the center of the 

model. The vertical lines in (c) mark the maximum shear on the time-step profiles and illustrate the contraction of the most active 

portion of the crack with increasing time. 
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Fig. 3. (continued) 

gives the displacement vs. time of the node at the 
center of the segment. This displacement history 
is characteristic of all simulations that reach the 
instability condition. 

An interesting feature of the numerical model 
is that the most rapidly slipping portion of the 
fault patch constricts to a sub-patch (Figs. 3a and 
3~). The development of a sub-patch is character- 
istic of simulations with plane strain or anti-plane 

strain. The length of the sub-patch correlates 
with the critical stiffness of eq. 29, i.e. 5 = B in 
eq. 15. However, the length of the sub-patch at 
instability is always longer than the predicted 
minimum patch length, 2f,, obtained using 5 = B. 
A generally satisfactory empirical representation 
of the sub-patch half-length is obtained from eq. 
15 using 5 N 0.4B. Figure 3 and the following 
figures show I, from eq. 15 with 5 = 0.4B. 
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As suggested by eq. 29, the numerical resutts 
demonstrate that instabilities can nucleate when 
A - B > 0 (velocity strengthening), given suffi- 
cient perturbation of stress above the steady-state 
friction. Qualitatively, the simulations with ,4 -- B 
> 0 are similar to those with A -- B < 0, includ- 
ing the development of a sub-patch with dimen- 
sions that scale by eq. 1.5 using 5 = 0.48. How- 

ever. if the Fault is rate-strength~ning~ and if [he 
initial stress is not sufficiently high relative to the 
steady-state friction, then accelerating slip termi- 
nates and the ct~nd~tion for ~T~stabi~jty is nut 
reached. 

Figure 4 illustrates results of models with um- 
form initial @. uniform normal stress and random 
initial shear stress, distributed uniformly between 
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Fig. 4. Numerical model with 300 nodes and randomized initial shear stress. Parameters for the calcu~~ti~n~ are: ri r fl.(@k 

B = Q.006, i? = IO” s, G = 104a, j = 0, and initial shear stress from (piI + 0.06)a to I/L;, + 0.08)~. The logarithm of slip speed for 

faults with different values of D, is indicated. 
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Fig. 4. (continued) 

r = (& + 0.06)cr and T = (& + 0.08)~~. Except for 
the magnitude of DC,,, the parameters employed 
for the simulations of Figure 4 are identical (A = 
0.004, B = 0.006, 0, = 109a). Because of the 
non-uniform initial stress, initial slip speeds are 
also non-uniform. 

As with the uniform initial stress models, the 
dimensions of the unstable sub-patches in each 
heterogeneous stress model correlate with 1, of 
eq. 15 with 5 = 0.48. Note, that each of the 

following examples employs different values of B 
and A -B to establish that I, scales by B and 
not by A or some combination of A and B. 
When DC is varied, the zone of most rapid slip 
also changes according to eq. 15. Also, note in 
Figure 4 that the initial heterogeneity of slip 
speed quickly becomes smoothed at spatial wave- 
lengths somewhat less than I,. This is also re- 
flected in an initial smoothing of the shear stress 
profiles. At longer wavelengths there is growth of 

300 

125 



the slip speed heterogeneities. Because of the tributed between cr = 0.0% and CT = i .O%. where 
very rapid acceleration. the slip in one region Ir is the mean normal stress. For the models 
soon outpaces the other areas of local accelera- illustrated in Figure 5. differcne values of ii%. 
tion. were employed and the other parameters were 

Figure 5 gives an example of a simulation with the same ! .A = 0.005, I3 ;- ~1.008, 8,, I (Per ). 
uniform initial shear stress and uniform initial H Again. B and B - A, for this set of simulations. 
and heterogeneous normal stress randomly dis- differ from the values used i~r the models oi 

Position ( 1 division = 500,000 DC) 
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0 300 

Position ( 1 division = 200.000 DC) 

Fig. 5. Numerical model with 300 nodes and randomized normal shear stress and uniform initial shear stress. Parameters tar the 

calculations are: A = 0.005, B = 0.008, 0 = 10” s, G = 10Jcr. + = 0, uniform initial shear stress of (fib -t tJ.OYSjci and normal stress 

from (T = 0.955 to c = l.OSe, where zi is the mean normal stress. The logarithm of slip speed for faults with different values of 11, 

is indicated. 
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Figures 3 and 4. The results with heterogeneous 
normal stress are similar to the results obtained 
using heterogeneous shear stress. Spatial varia- 
tions of slip speed at wavelengths less than I, 
rapidly become smoothed and the sub-patch size 
at the onset of instability approximately equal to 
I, with 5 = 0.48. 

The principal new finding, from the numerical 
models, is the development of a sub-patch that 

accelerates to instability. Attempts to force accel- 
erated slip over longer lengths, by setting a higher 
initial shear stress along a longer patch, resulted 
in progressive constriction of the most rapidly 
slipping portion of the fault, with increasing dis- 
placement. Patch dimensions greater than 1, (with 
6 = 0.4B) were observed under two circum- 
stances. (1) The initial stress is close to ,u,,,. In 
this situation, it appears that instability occurs 



128 

4 

3 

2 

^u 1 
cl 

2;* 

8 $ -1 

.a -2 
?I 
- -3 

g -4 
-1 

-5 

-6 

-7 

0 

Position ( 1 division = 70.000 5,) 
Fig. 6. Numerical model with 299 nodes showing spread of zone of rapid slip. Parameters for the calcuiat~:n~~ :!rt’: -1 .z ii.i!fiX. 

B = 0.009, 8 = IO” s, G = 10%. i: => 0, and uniform initial shear stress r = (F‘,, i- 0.04)~. fnitialiy, slip conccntr~rfcs 11: <t Lone w:rtll 

half-length corresponding to eq. I5 with t = 0.4/S. then begins to expand. When the Tone of raped slip rc~-hc~ the cndc +)I lhz 

model, slip begins to decelerate. The initial shear stress for this calculation is near the \trady-state stress. Ii.h_?~; l’hc crrttlcal length 

for unstable slip from steady-state sliding from ert. 15 and using t I< --” .A#. is 190 divisiorr.. 
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Fig. 7. Numerical model with 299 nodes and uniform initial c(~ndjtions. This model employs alternative evoIutit>n cyuation 7 rnstead 

of eq. 5. Constitutive parameters for the cafculations are identical to those of Figure 3. with i = 0 and kitial shear stre\s 

T = t& + 0.08)~. The length bar gives the width, 21,, obtained from eq. 15, with 6 = 0.4R. Note that the Jimcnkn of the /one that 

nucleated slip is much less than that found using evolution law 5. 
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before sufficient slip can occur to permit develop- 
ment of the sub-patch. (2) Low initial stress, close 
to pu,, with stressing rate at or near to zero. In 
this case, the most rapidly slipping zone constricts 
to a sub-patch, but then begins to enlarge with 
increasing slip. The lengthening appears to be 
related to the approach of 8 to steady-state along 
the most rapidly sliding portion of the fault. Near 
steady-state, the critical stiffness for instability is 
given by 5 = B -A instead of 5 = B. Hence the 
critical half-length for instability is greater near 
steady-state. In extreme cases, if the total length 
of the model is not much longer than 1, with 
5 = B -A, the sub-patch expands to fill the slip- 
ping segment and the acceleration of slip stops 
(Fig. 6). 

A limited series of results were obtained using 
the alternate evolution equation 7. Use of eq. 7 in 
these simulations yields results qualitatively simi- 
lar to those discussed above. However, total pre- 
monitory displacements are smaller and the sub- 
patch is significantly narrower than that found in 
the models that used evolution equation 5 (see 
Fig. 7). 

Comparison of numerical results with the simple 

model 

The numerical results provide a test of the 
solutions for a simple patch and the simplifying 
assumptions that were employed. 

Figure 8 compares the solutions for the time to 
instability from the simplified fault patch model 
(eqs. 26, 27) with times calculated using the 2D 
numerical model, assuming uniform initial stress. 
For this comparison, the patch stiffness, k, for 
the solution was evaluated using eq. 14 with 1 set 
equal to the half-length of the fault in the numer- 
ical model and T = 2/3, i.e. the factor for con- 
stant shear stress crack in plane strain (Table 1). 
Over the range of conditions illustrated in Figure 
8, the times to instability given by the simple 
model generally differ from the corresponding 
numerical results (open symbols) by 2% or less. 
However, the patch solution diverges significantly 
from the numerical results for the case i = 0 for 
initial stresses near CL,. In this region, the numeri- 
cal results form an asymptote to the CL, line. This 

difference arises from a breakdown of the as- 

sumption 8 B DC/e, used for the patch solutions. 
The results for i # 0, are in close agreement with 
the numerical model even for initial stresses sub- 
stantially below pS, where the condition d ZS- DC/0 
is not satisfied. The success of the simple model 
in this range is apparently due to negligible evo- 
lution of 8 as it is driven across the steady-state 
boundary by the external stressing, i. 

At stresses near pmmax, giving times to instabil- 

ity G low2 s, the numerical results for the time to 
instability differ from the patch solutions by as 
much as 20%. The cause of this discrepancy is 
not known and has not been investigated as it 
seems of little practical interest. 

A series of numerical results, using the full 
constitutive relation (eq. 21, with rate cut-offs, 
was obtained to evaluate the possible errors in- 
troduced through the use of the simplified consti- 
tutive relation (eq. 3) with the simple patch model. 
As suggested by the earlier discussion, for these 
problems where 0/b X- 1 is large, the results 
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Fig. 8. Comparison of simple patch solution, continuous curves 

and numerical results (symbols) for time to instability. Param- 

eters for the calculations are: A = 0.008, B = 0.009, &a = 0.6, 

f3 = lo9 s, G = 104u. In the numerical model, the initial stress 

is uniform and the total half-length of the model is 2.5 X 10’ 

D,. The stiffness used for the patch solution was obtained 

from eq. 14 and used I = 2.5 x 10’ DC. Open symbols give the 

numerical results using the simplified form of the constitutive 

law (eq. 31. At times to instability (of G 10-l s), the numerical 

results obtained using the full constitutive law (eq. 21, with 

b = DC/s, begin to diverge from the results obtained with eq. 

3 (solid squares). 



10-516410~16214' IO0 10' 102 103 10410510~ 10' to@ 109 1O'O 

Time to instability(s) 

Fig. 9. Comparison of simple patch solution, continuous curv’ch 

and numerical results for time to instability. In this exampk. 

the numerical results (triangles) were obtained using the altrr- 

native evolution equation (7). Parameters for the calculations 

are identical to those of Figure 8. 

differ only in the region of ,LL,,,;,~, where the 

system is a very short time from instability. The 

solid squares in Figure 8 show the results using 
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Fig. 10. Comparison of simple patch solution, continuou:, 

curves and numerical resuhs for time IO instability with hrt- 

erogeneous initial shear stress. Parameters for the calcula- 

tions are identical to those of Figure X. except that initial 

shear stress varied randomly about the initial mean stress hq 

+0.01?. Open squares plot the results using the mean inittal 

shear over the entire fault, and the filled squares plot the 

results using the mean initial shear stress on the section of the 

fault that eventually nucleated the instability. 

relation 2 with h = 1.0 DJS. I’hc maximum dli- 

ference in the time to instability obtained using 

the different cxmstitutive relations is about 0.01 s. 

which again seems of little practical interest. 

The displacement given by cya. 22 ;md 3.: 

shows agreement with the numerical model that 

is comparable to that of lhc ritTl~-to-instability 

results. That is. the displacemenr ot the center 

node of the numerical model ;I! \trme time :. is 

equal to the displacement given hk eq. 22 or 23 at 

time T. where i(r- I l/T 1 ’ ii.07. The charac- 

teristic form of the solution is wcii-represented by 

the numerical result of Figure .id. The patch 

solutions diverge from the numerical results fog 

initial stresses in the vicinity 1~ i-l__ when the 

stressing rate is zero, because ~1 ;I breakdown of 

the assumption 8 z+ D</H. 

Figure Y compares the time to Instability horn 

the numerical model and using #K aiternntc cvo- 

lution equation 7 with the patch atdutionx. The 

results arc cjualitativcly similar. but differ quanti- 

tatively. 

Figure IO compares the results tar the model 

with heterogeneous initial sinx with the patch 

solutions. In this comparison, [IIL: open symboi~ 

define the shear stress as the mean of the initiai 

stresses over Lhe entire fault. ‘t’he ;tgrecment crl 

the model with the patch solution !eq. 27) ap-. 

pears to be quite good, but the times from the 

numerical model are consistent!) icss than those 

from eq. 27. This appear:, tc> hc because thy 

section of fault that nucleates the instability ha5 :I 

higher initial stress than the mean initial stress <of 

the entire fault. Better agreement between the 

numerical results and the patch solution is oh- 

tained using the local mean of the initial stress on 

the section of the fault that nucleated the insta- 

bility (solid symbols in Fig. 10). 

Discussion 

The extent to which the resutts~ presented here 

describe the earthquake nucleation process dc- 

pends on the applicability of the rate- and state- 

constitutive formulation to faults in nature. This 

question cannot be answered definitively at this 

time. but several lines of evidence suggest that 
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faults have properties of the sort characterized by 
this formulation. First, controlled sliding experi- 
ments using laboratory faults have shown that the 
properties described by the rate- and state-de- 
pendent formulation are characteristic. Similar 
results are observed for bare faults and faults 
with gouge, under wet and dry conditions. Sec- 
ond, laboratory faults exhibit a rich variety of 
sliding phenomena, apparently analogous to faults 
in nature, that include steady creep, simple or 
chaotic oscillatory creep, and unstable slip that is 
preceded by an interval of accelerating creep. 
These sliding behaviors, and their transitions to 
other behaviors, have been modeled quantita- 
tively, using rate- and state-dependent constitu- 
tive formulations. Third, this type of governing 
relation for fault strength has those properties 
that seem to be required of faults in nature, 
including slip weakening at the onset of unstable 
slip, instantaneous rate strengthening that is 
characteristic of rocks and spontaneous ‘healing’ 
that restores strength following unstable slip. 

In view of these considerations it is argued 
that constitutive properties of the type discussed 
in this paper govern the earthquake nucleation 
process. However, the constitutive constants and 
functional descriptions may be poorly defined for 
the conditions and time scales characterizing the 
slip of faults in nature. For example, processes 
such as solution transport and cementation may 
enhance the healing rate, i.e. state-dependency, 
at longer time scales. Also the results obtained 
using different evolution equations, while qualita- 
tively similar, differ quantitatively, further illus- 
trating uncertainties in the formulation. Hence, 
the results presented here probably should be 
regarded as a plausible, but qualitative, picture of 
the earthquake nucleation process. 

The present study confirms and expands upon 
the earlier results of Dieterich (1986) that were 
based on numerical solutions of a single spring 
and slider approximation of a fault patch. It is 
found that the displacement history and time to 
instability for the simple model are not signifi- 
cantly different from the numerical results, in- 
cluding models that employ heterogeneity of fault 
stresses. The solutions presented above are for 
the simple case, in which the stress is applied to 

some level, followed by stressing at a constant 

rate. However, it is worth noting that these solu- 
tions may be applied, piecewise, to follow compli- 

cated stressing histories. 
A characteristic interval of self-driven, acceler- 

ating fault creep, in the nucleation zone, leads to 
slip instability. This accelerating creep occurs in 
the stress interval between the steady-state fric- 

tion, P,, and the maximum friction, pmax. The 
principal new finding from the numerical model 
is the spontaneous development of a localized 
zone, or sub-patch, on which slip most rapidly 
accelerates. The dimensions of the sub-patch ap- 
pear to scale by the relation for I, (eq. 15). If 
conditions on the sub-patch are well removed 
from steady state, the appropriate scaling follows 
1, obtained using 5 = 0.4B. 

The curves of Figure 8, obtained with finite 
stressing rates, illustrate an interesting transition 
in the dependence of the time to instability on 
stress. At low stresses, below steady-state friction, 
changes in stress result in approximately linear 
changes in the time to instability. However, as the 
stress increases relative to the steady-state 
boundary, the dependence of time to instability 
on stress undergoes a transition to a linear de- 
pendence of the logarithm of the time to instabil- 
ity. From eq. 27, and as noted by Dieterich (1986), 
the slope of stress vs. In ti equals -A. This slope 

is also approximately obtained using the alterna- 
tive evolution equation (Fig. 9), suggesting this 
property is insensitive to details of the evolution 

law employed. 
The duration of the nucleation process can be 

quite long. For example, the time-to-instability 
solution at zero stressing rate (eq. 27) intercepts 
the ps line at ti approaching 8 (see Fig. 8). 
Recall, from evolution equation 5, that if the 
fault has remained fully locked, 8 is equal to the 
elapsed time from the last earthquake. 

These results suggest a picture of earthquake 
occurrence in which a seismic region has a con- 
tinuous supply of sub-patches to nucleate earth- 
quakes. These sub-patches form and evolve from 
the heterogeneity of conditions and local stress 
build-up. At any given time there will be numer- 
ous sub-patches that are at various stages of the 
localized slip acceleration process. The stressing 
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history experienced by a sub-patch might ideally 
consist of a constant background stressing rate, 
punctuated by stress steps at the time of nearby 
earthquakes. Because of the logarithmic depen- 
dence of the time to instability on stress in the 
later stages of the nucleation process, the timing 
of earthquakes will be very sensitive to perturba- 
tions of the stressing history. As discussed by 
Dieterich (1986) a population of patches that 
yields a constant rate of seismicity under constant 
stressing rate, will, following a step increase 01 
stress, produce a higher rate of earthquakes that 
decays by the l/t Omori law of aftershock decay. 
A paper is in preparation that applies the solu- 
tions presented here to the effects of stressing 
history on seismicity rates. 

The result yielding a minimum patch dimen- 
sion for unstable slip appears similar in many 
respects to the familiar fracture mechanics result 
for critical crack length for unstable crack growth. 
In each case, there is minimum crack size for 
instability, and in each case, if the crack is less 
than the critical size, an instability can occur only 
if crack grows to the critical dimension. Also, the 
rate- and state-dependent constitutive law yields 
a rate-dependent apparent fracture energy for 
initiation of slip at a crack tip that is analogous to 
the rate-dependent fracture energy for sub-criti- 
cal growth of tensile fractures. 

However, there are fundamental differences 
between the frictional and crack growth instabili- 
ties that appear to be of importance for applica- 
tions to earthquake nucleation. The unstable 
crack solutions assume constant stress on the 
walls of the crack and fracture energy at the 
crack tip controls crack elongation. Conversely. 
for the nucleation of frictional instability, de- 
scribed here, the stress does not remain constant 
on slipping surfaces. Instability is controlled by 
rate- and state-dependent resistance to slip on 
the entire slipping fault patch. In the former case. 
instability pertains to crack growth, while in the 
latter, instability pertains to slip rate. A slip insta- 
bility can occur under conditions of constant stiff- 
ness which is equivalent to instability on a patch 
of fixed size. The numerical models indeed 
demonstrate that slip instability can develop as 

the most active portion of the patch is constrict- 
ing-a result that is not anticipated from fracture 
mechanics treatments. 

Okubo (1989) employed the author’s computer 
code and approach for quasi-static nucleation, 
described above, with a code for dynamic rupture 

propagation. to simulate the fuli earthquake cycle 
on a fault with rate- and state-dependent friction. 
The transition from quasi-static accelerating creep 
to earthquake rupture was accomplished by using 
the nodal stress, slip, slip speed and state from 
the final static time-step calculation as the start- 

ing point of the dynamic calculation. Okubo found 
that for the dynamic calculations., slip accelerated 
smoothly and spontaneously from the quasi-static 
solutions to initiate essentially crack-like dynamic 
rupture propagation. For the initial stages of the 
dynamic calculation, Okubo observes: “Once the 
critical fault patch is established. the rate of 
rupture extension quickly reaches the Rayleigh 
wave speed.” 

Similar results for the initial stages of dynamic 
rupture growth are reported for stick-slip experi- 
ments (Dieterich, 1980; Okubo and Dieterich, 
1984; Okubo and Dieterich. 1986; Ohnaka et al. 

1986; Ohnaka and Kuwahara, 1990). Those exper- 
iments show that in the interval beginning about 
I ms prior to rapid rupture propagation (speeds 
*> 1 km/s), slip in the nucleation zone acceler- 
ates and spreads, but at significantly slower rup- 
ture speeds. The slip rates during this phase arc 
characteristically in the range of 2-10 mm/s. 
Normalized by D,, these slip speeds are roughly 
> 1 x lO”DJs, which is beyond the cutoff speed 
for the quasi-static analysis reported here. De- 
tailed experimental data for the much earlier 
quasi-static phase of nucleation considered in this 
study, when the numerical models predict that 
the zone of rapid slip constricts. do not appear to 
be available. 

The development of a characteristic dimension 
of the nucleation zone prior to instability, and 
solutions for displacement on the patch, may 
provide some constraints on the moment Ma = 
(G6) (area) of premonitory slip. From the dis- 
placements given by eq. 23 and assuming the 
zone of accelerating slip forms a circular patch 
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with radius given by eq. 15, the moment in the 
interval t, before the instability to t, before 

instability is: 

L 

AD, . +t, 
(B-516 

AD, 
(B-+i, +t2 

Figure 11 plots eq. 34 for the interval t, = 10,000 

s before instability to t, = 10 s before instability, 
using representative values for the parameters as 
given in the figure caption. Figure 11 illustrates 
the dependency of premonitory strain changes in 
the nucleation zone to the characteristic displace- 
ment 0,. 

Based on laboratory measurements of D,, Di- 
eterich (1986) noted that strain from premonitory 
creep in the nucleation zone might be very diffi- 
cult to detect as an earthquake precursor. In 
Figure 11, using DC of 5 x lop5 m, which is near 
the upper limit of the laboratory observations, 

18 - 
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-6 -5 -4 -3 -2 -1 

Log P,(m)1 

Fig. 11. Log,, of the moment of premonitory slip in the 

interval from 10,000 s from instability to 10 s before instability 

from eq. 34. Parameters used for this plot are: A = 0.005, 

B=0.007, (= 0.48, n=3n/24, G= 15,000 MPa, and ii= 

0.01 m/s. Contours of r give the radius of the nucleation 

zone (from eq. 15). The dashed vertical line, with arrows, 

shows the approximate upper limit of 0, observed in labora- 

tory experiments. The dashed horizontal line, with arrows, 

gives the approximate lower limit for detection of precursory 

strain signals from the earthquakes reported on by Johnston 

et al. (1987). 

the expected radius of the nucleation zone is 

small, 20 m or less, and the moment of premoni- 

tory slip is 10”’ Nm or less. Johnston et al. (1987) 

report a failure to observe evidence of premoni- 
tory strain prior to moderate earthquakes that 
occurred near high-resolution borehole strain 
meters. The upper limit of strain precursors that 
would escape detection in their observations was 
about lOI Nm, which is consistent with the con- 
clusion based on laboratory observations of DC. 

However, the scaling of DC to faults in nature 
remains an open question. In the laboratory, DC 

varies with surface roughness and gouge particle 
size, but the experiments cover a relatively nar- 
row range of conditions. 
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