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ABSTRACT

Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M.
Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics,
211: 115-134.

Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena
including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength
following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that
accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling
relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading
conditions and constitutive parameters which include D, the characteristic slip distance. If slip starts on a patch that
exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of
instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with
results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time
to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement
are proportional to D_, the moment of premonitory slip scales by D?. The scaling of D, is currently an open question.
Unless D, for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising
from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the
possibility that D, in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions
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of the smallest earthquakes in a region provide an upper limit for the size of the nucleation patch.

Introduction

The processes and interactions that lead to the
initiation of unstable earthquake fault slip are
collectively defined here as earthquake nucle-
ation. This subject bears upon several topics of
interest for earthquake seismology. In particular,
earthquake nucleation determines the time of
occurrence and place of origin of earthquakes. In
turn, seismicity rates and space—time patterns of
earthquakes represent selected characteristics of
populations of nucleation events. Because earth-
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quake nucleation processes may result in measur-
able physical changes prior to earthquakes, such
as premonitory creep, this subject could also be
of considerable relevance for earthquake predic-
tion. Finally, nucleation processes might affect
earthquake rupture propagation and seismic radi-
ation by altering conditions along the fault prior
to an earthquake.

The nucleation of earthquake slip may be in-
fluenced by several factors including fault consti-
tutive properties, bulk properties of the rock mass
in which an earthquake fault is embedded, stress-
ing history, pore fluid interactions, and geometry
of the fault-rock mass system. The following
treatment examines details of the nucleation pro-
cess on faults with a rate- and state-dependent
constitutive law for fault slip, subjected to simple
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stressing histories. Heterogeneity of physical con-
ditions along a fault is also considered.

This study extends and generalizes the analy-
ses of Dieterich (1986, 1987) which treat nucle-
ation in response to constant-rate loading and
loading with a periodic component. The previous
studies relied upon numerical solutions of a sim-
ple spring and slider approximation of fault inter-
actions. Below, an analytic solution for that prob-
lem is presented. In addition, the nucleation pro-
cess is examined in detail with a plane-strain
numerical model. The numerical model permits
evaluation of simplifying assumptions used for
the spring and slider approximation of fault inter-
actions

Constitutive law

Constitutive laws with rate- and state-depen-
dence successfully represent the experimental ob-
servations of ubiquitous velocity-, time-, and dis-
placement-dependence of fault strength (Di-
eterich, 1979, 1981a; Ruina, 1983; Weeks and
Tullis, 1985; Tullis and Weeks, 1986; Okubo and
Dieterich, 1986; Biegel et al., 1989). In addition
to .representing experimental observations, this
constitutive approach -has the property of gener-
ating spontaneous slip instabilities under appro-
priate conditions with subsequent ‘healing’ of the
fault to recover the loss of strength at the time of
the instability. Tse and Rice (1986) have applied
the constitutive law to model the earthquake cy-
cle on strike slip faults and Stuart (1988) has
employed it to model great subduction earth-
quakes in Japan. Conditions governing the onset
of slip instability in simple spring and slider sys-
tems have been considered by Dieterich (1978,
1979, 1981a), Rice and Ruina (1983), Ruina
(1983), Gu et al. (1984), Blanpied and Tullis
(1986) and Tullis and Weeks (1986).

The sliding resistance, 7, divided by normal
stress, o, defines the coefficient of fault friction,
Ty
n=1/0 (n

Throughout the following, ¢ is assumed to be
constant,
Several similar, essentially equivalent, formula-
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tions of ratc- and state-dependent fault strength
have been employed. The previous nucleation
studies (Dieterich, 1986, 1987) employ:

T i b :
w =y - A In| ot )+ 5 In| S (2)

where. p,,. 4. B, a. and h. arc experimentally
determined paramecters and 6. » and 8 are fault
stip, slip specd and the state variable. respec-
tively. At & and 8 well-removed from the rate
limits G.e. a /8 » 1. 8/b = 1 ¢y 2 simplifies to.

mu,rAINS+Bloo HES
where wg, collects the constant tcrms from ¢ =
wn “mwe-AIna -Binbh {4y

The simplitied form ot the constitutive law s
cquivalent to that proposed by Ruina (1980, 1953)
and later used by several other investigators. In
¢q. 3 the In # term is sometimes replaced by
® =In . Constants 4 and B typically have val-
ues in the range 0.005 to 0.010.

Sliding history effects and consequently dis-
placement- and time-dependent cffects arce repre-
sented by the variable 6. Dieterich (1979) and
Dieterich and Conrad (1984) interpret 4 o~ a
measure of the average age of load-supporting
contacts between sliding surfaces and that con-
tacts strengthen with age. Because contacts are
destroyed and created during slip, it 1s reasoned
that # depends on the slip history. The following
law for the evolution of ¢ with time or displace-
ment has been discussed by Ruina (1980) and
cmployed by Dicterich (1986):

d¢ Ho . de 1w )
T 1 ) . or equivalent s i {3}
Displacement-dependent etfects in expermments
and in eq. S scale by the characteristic slip dis-
tance, D,. In experiments. the magnitude of D,
depends on surface roughness and varies from
about 3 microns for slip on initially bare, fincly
ground surfaces to a maximum of about 50 mi-
crons for coarsely ground surfaces separated by a
layer of fault gouge (Dieterich, 1979, 1981a).
Note from eq. 5 that at steady-state, dg /dr = (),
and 6 = D_./8. When not at steady-state. 8 tends
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to evolve toward the steady-state value. At con-
stant 8, eq. 5 has the solution:

DC
06=—+
é

where 8, is the value of 8 at 6 =0. For a fault
that is locked (8 = 0), d8/d¢ =1 and @ increases
with elapsed time. Because rapid slip and large
displacements of an earthquake will reset 8 to
values approaching zero, a fault that has re-
mained locked since the previous earthquake will
have 6 approaching the time interval from the
last earthquake. Note, however, that the constitu-
tive law as presented in eqs. 2 and 3 does not
permit zero slip speed. Hence, small displace-
ments in the interval between instabilities will
tend to reduce @ to values somewhat less than
the elapsed time interval.

For completeness, it is noted that an alternate
evolution law has been used in several studies
(Tse and Rice, 1986; Tullis and Weeks, 1986;
Stuart, 1988). It may be written as:
de -0 05
da_(Dc)lnD) )

(o

D,
6y — ?) e /P (6)

Use of evolution equation 7, in most cases, yields
results that are similar to results with eq. 5. This
study employs evolution equation 5, but a few
comparisons with eq. 7 are made below.

Two special cases of the constitutive law are
useful for the following discussion. The first is for
steady-state sliding. At steady state, substitution
of, § = D_/8, in eq. 2 yields the steady-state fault
friction in terms of state:

Al i 11 +B1 i 1 8
=py— —+ 1]+ —
Ks= Ko M5 n(b+) (8)

c
Similarly, a substitution of 6 =D_/8 gives the
steady-state fault friction as a function of §. Un-
der conditions where a/8>1,6/b>> 1, the
steady-state friction from the simplified friction
law (eq. 3) is:
py=po+AIn D.+(B-A)In 9 (9)
The second case defines the upper limit of

frictional strength for eq. 3 which occurs when
5 — oo

0
;Lmax=/.L0+Bln(E+l) (10)

117

With the simplified form of the constitutive law
(eq. 3), p. cannot be defined using & — oo,
because any frictional stress can be achieved by
sliding at a suitable rate. A limiting slip speed, 6},
for quasi-static slip is employed to define u,,,,. If
& increases to Si, then an instability is assumed to
be have begun and quasi-static analysis is no
longer appropriate. Hence, the maximum, quasi-
static limit for the simplified constitutive law is

B =Ho+AINn 6, +BIn o (11)

If 6,=a, then u,,, defined in eq. 10 is the same
value as that defined for eq. 11.

At stresses between u, and u,,,,, fault slip is
faster than the steady-state speed. Hence, 8 de-
creases and, at constant 8, the fault weakens with
time and displacement. At stresses below p, the
slip speed is less than steady state and the fault
strengthens or ‘heals’. As stress reaches u., 6
equals &, and unstable sliding commences.

Dieterich (1979, 1981a, 1986), Koslov and Liu
(1980) and Gu et al. (1984) show that self-driven
acceleration of slip speed to instability can occur
in the stress range pu,<p <p,, (see Fig. 1).
This study is concerned with the processes and

'1- slope = B-A

ine

Fig. 1. Plot of friction coefficient against state, 6. Lines of
constant slip speed and g, which is defined at § = §,, have
slope B. The steady-state friction, 4., has the slope B — 4. At
stresses below u,, 8 evolves to the right, increasing the
strength of the fault at any reference slip speed. At stresses
above u, @ evolves to the left, decreasing the strength. Note
that u  and p .. change as 6 evolves. The shaded portion of
the graph schematically represents the region where the sim-
plifying assumption employed for the simple patch solution,
discussed below, is valid.
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interactions that take place in this stress interval,
where under suitable conditions, slip instability
may nucleate. In gencral, for simulation of earth-
quake processes, 6 will always be very large
throughout the nucleation process insuring that
the condition 6 /b > 1 is satisfied. Also, the con-
dition a/5 > 1 holds until the stresses approach
Homax- Al that point, the slip speeds are very high
relative to D, /8, and the system is essentially at
instability. Below, analytic solutions for a simple
nucleation model and detailed plane-strain nu-
merical solutions using simplified constitutive re-
lations {eq. 3) are presented. Comparison with
numerical solutions using the full constitutive for-
mulation (eq. 2) shows the solutions differ only in
the final moments immediately preceding insta-
bility and that those differences are slight.

Previous studies of the conditions for instability

Several studies of spring and slider systems
{Dieterich, 1979, 1981a: Rice and Ruina, [983:
Ruina, 1983; Gu ct al., 1984) have established
that for an instability to occur, the stiffness (A =
Ar/d) of the system must be less than somc
critical value, k;, given by:

ta
ko=

crit D { 1)

where ¢ is a parameter that depends upon the
constitutive parameters and stress state. At stff-
ness greater than k ,;, displacements decrease
the applied stress sufficiently to move the applicd
stress away from p .., terminating the slip accel-
eration. A dependence of the transition from
stable sliding to stick slip, of the form given by vq.

TABLE |

Values * of n for different patch geometries
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12, has been established experimentally (Di-
cterich, 1978). Ruina (1983) and Rice and Ruina
(1983) show that perturbations from steady-state
ship will grow to instability for stiffness less than
the critical stiffness where:

E« B~ A4 {13

Hence, from cq. 12, the usual condition for insta-
bility is that B > A, which corresponds to steady-
state velocity weakening. The valuc of & given by
cq. 13 is a lower bound. For finile perturbations
from p.. instability may occur with stiffness
greater than that obtained from ¢q. 12 using cy.
13 (Rice and Gu. 1983).

An approximate representation of conditions
required for onset of slip instability on a lault
patch embedded in an elastic medium s tound by
combining the spring and shider results with clas-
ticity solutions for displacement along & crack
(Dieterich. 1986). This assumes that propertics
and conditions at the center of the patch are
representative of the eatire patch 'The approxi-
mate effective stiffness of o fault patch v ob-
tained from crack solutions relating fault ship 8 o
stress drop A+

A Gy -
R (14

A

where | is the half length (or radius? of the fault
patch. G is the shear modulus (Poisson's ratio
taken to be 0.25) and # 1y a lactor with a value
that depends upon the geometry of the slip patch
and assumptions relating to slip or stress condi-
tions on the patch. Table 1 gives values of y for
somge simple patch geometries.

n ! Patch

T /24 radius circular crack

2/3 length /2
4/ 37 length /2
172 length /2
1/ length /2

plane strain. constant shear stress
plane strain. constant displacement
anti-plane strain. constant shear stress
anti-plane strain. constant displacement

Referencs:
Eshelby (1957}
Starr (19281
Chinery (1969
Knopoff (1958}
Chinnery { 1964)

2 Assumes Poisson’s ratio v = 0.25. Displacement & is measured at the center of the crack.
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Dieterich (1986) combines the relation for crit-
ical stiffness for instability (eq. 12) with the rela-
tion for patch stiffness (eq. 14) to obtain:

GnD,

l.= to

where /. is the minimum patch half-length for
unstable fault slip. Patches with dimensions less
than 2/, will have stiffnesses in excess of k,;, and
sliding will always be stable. Equation 15 implies
a lower bound for the dimensions of the earth-
quake source. Examination of stick-slip events
along a 2-m fault provided an approximate exper-
imental verification of this relationship (Di-
eterich, 1981b). In that study, stick-slip events,
confined to the interior of the fault were ob-
served, and the dimensions of the unstable fault
patch always exceeded the approximate minimum
size predicted for the conditions of the experi-
ment.

(15)

Simple patch model

The simplified nucleation model consists of a
fault patch embedded in an elastic body. The
patch dimensions are fixed and conditions along
the fault are represented by the center-point val-
ues. Stress acting on the patch is controlled by
remote displacements and by slip on the patch.
Remote stressing (e.g. tectonic loading, earth tides
or stress transfer by slip elsewhere on the fault)
results in a stress change on the patch in the
absence of slip on the patch. The patch has
dimensions equal to or in excess of 2/ as given
by eq. 15 and has an effective stiffness k, from
eq. 14.

Equating the constitutive law (eq. 3) with fault
stress gives:

7(t) —kd

=uy+AIns+BIno (16)
(o8

where 7(¢) is the remotely applied stress acting
on the fault in the absence of slip and —k 3§ is the
decrease in stress due to fault slip. Using eq. 16
with the evolution law for 6, the problem may be
solved numerically.

However, when the nucleation process is un-
der way and slip is accelerating, the slip speed is
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much greater than the steady-state speed (6>
D_/8). Under these conditions (5> D./9), the
1/8 term in eq. 5 does not contribute to the
evolution and eq. 5 reduces to:

de 0
£=—b—c, 6=0,e /P (17
Hence, under these conditions, 8 evolves toward
an ever diminishing steady state (6 = D, /&) that
is effectively zero compared to the current 6 and
the evolution becomes independent of slip speed.
This condition holds once the nucleation process
is under way, as the slip undergoes acceleration
to instability. The following analysis employs the
approximate relationship 17 for evolution of 4.
Conditions under which this approximation is ap-
propriate are discussed in greater detail below.

Substitution of eq. 17 into eq. 16 yields:

T(t)y —ké

o

. Bé
=py+AInd+Blnb,—— (18)
DC
A variety of functions for the remote stressing,
7(¢), result in a separable differential equation
that may be solved directly. For the simple case

of constant rate of remote loading, 7(¢) = 7, + 7¢,
(eq. 18) vields:

' Tt 5 —~Hé
cfo exp(Z;) dt=[0 exp(——A—) s (19)

where C and H contain terms for the initial
conditions and model constants, respectively:

D, To/0 =t :
C= ‘é;‘ exp(—;——) = 50 (20)
H Bk
"D o (21

Note in eq. 20 that C is found to be the initial
slip speed, 8,. Equation 19 has the following
solutions:

A [CHo[ ML)
=5 n ; —exp(—/—i—;) +1}, 7#0
(22)
5= 2l 23
" H n{ _A—}’ T (23)
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The slip speeds are:

ol e

70 (24)
L He ]! )
=lc-—>| - =0 (25)

The time of instability, ¢,, is obtained by sub-
stituting §,, the assumed slip speed at the start of
instability, into eqgs. 24 and 25:

Ao i Ho Ao (1 Ho'
rlz-.*ln(f+f—}—»v—_ln -+ — ],
T C T T |5, T
7#( {26)
All 1
ti=—1—=-—1], 7=0 (27)
H\C s

In turn, expressions for the total displacement at
the time of instability may be obtained by substi-
tuting ¢; into eqs. 22 and 23. State 6, at ¢, is then
obtained from the total displacement using cq.
17.

If the stiffness of the patch is sufficiently high.
then the rate of stress decrease due to slip will
result in decelerating slip. In the p vs. In 8 plane.
lines of constant slip speed have the slope B.
Hence, slip will accelerate if:

du

<B 28)
din @ (28)

See Figure 1. The derivative, du /d In#, is found
from the solutions for displacement with eq. I8,
Equating du /d Inf to B gives the patch stiffness
that results in constant slip speed:

Bo T

Koy = — +
cnt Dc (j

(29)

Slip will accelerate for stiffnesses less than k.
Ineq. 29, if 7=0, orif C is large compared to 7
(large 8,), then k_, =Ba/D, (ie. £ =B). Note
that parameter A4 does not appear, and that
acceleration to instability may occur on faults
with a positive steady-state slip speed depen-
dence (A — B > 0). However, the displacement
during unstable slip may be quite small, because
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6 will soon cvolve to steady-state, velocity
strengthening, which will stabilize the slip.

These results alone are insufficient to deter-
mine if an instability will nucleate. In particular.
the condition required for this solution., & =
D_ /8. may be satisfied initially, but evolution duc
to slip may result in this condition later being
violated. A particular solution- may be easily
checked to insure that it does not violate this
condition by solving for ¢, at the time of mstabil-
ity and testing to see if it remains large compared
to D./8,.

Numerical model

The purpose of the numerical model 15 to
investigate the aucleation process in more detail
and without the simplifying. constraints imposed
tfor the simple patch solutions. Hence, thé numer-.
ical model employs the constitutive relations, egs,
2 or 3 and the full evolution ¢gs. 5 or 7. The
model assumes plane-strain interactions of an
array of fault dislocations (Fig. 2). The medium is
homogeneous, elastic and infinite. The fault is
assumed to be initially planar. A section of fault
is free to slip and beyond the ends of the model,
the fault is pinned. The model and preliminary
results for nucleation were first reported by Di-
eterich (1988).

For this study, constitutive parameters A, B
und D_ are the same at all points on the fault.
Shear stress, fault slip and 8 are free to vary with

itslip, d

Fau

Position
Fig. 2. Represeniation of fault slip in- namerwcal model. The
fault is divided into discrete segments of length s. Fault-slip
on a segment is constant and segments are bounded by elastic
dislocations. Stress at the mid»puim:of ségrient 1, due to ship
on segment j. is found from the elastic dislocations bounding
segment j, at distances X, and X,
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time and position. Normal stress remains con-
stant during slip, but each point may be assigned
different normal stresses to give spatial variation
of fault strength.

An array of n equally spaced segments,
bounded by dislocations, provides a descretized
representation of slip distribution and stress state
along the fault patch. Slip along each segment is
constant. At time ¢, the stress at node i, located
at the center of segment ¢, is given by:

T = )+ 7t + Ar, (30)

where 7?

¢ is the initial stress on the segment at
time ¢t =0, 7 is a constant, remote stressing rate,
and Ar; is the change of stress resulting from
displacements of the fault nodes. Ar; is given by

the system of equations:
Ar;=S,6,, i,j=1,2,...,n (31)

gy

where eq. 31 employs summation convention and
8; is the array of nodal displacements giving total
fault slip. The n by n array of coefficients relat-
ing stress to displacement, S,;, is obtained from
elastic dislocation solutions. For an array of dislo-
cation segments bounded by edge dislocations in
an infinite medium:

¢ G 1 1 2
P 2m(1-v) | X, X, (32)

where G and v are shear modulus and Poisson’s
ratio, respectively. The terms X;; and X,; , are
distances from the center of segment i to the two
dislocations bounding segment j (see Fig. 2). For
uniform dislocation spacing, s:

X, =s[i—j—-1/2)
X, =s[i-j+1/2] (33)

Expressions for anti-plane strain, employing
screw dislocations at the segment boundaries are
identical to eq. 32 except that Poisson’s ratio, v,
is omitted. Equations for a vertical fault with a
free surface in anti-plane strain, or faults with a
mirror symmetry plane perpendicular to the cen-
ter of the fault, are analogous to eq. 32 except
that added distance terms are required for the
image segments.

A time marching procedure follows the slip of
each node and evolution of friction up to the time

121

that the first segment becomes unstable. Con-
stant slip speed during a time step is assumed.
For each time step, the computation finds the slip
speed at every fault node such that, at the mid-
point of the time step, the frictional resistance on
a segment, 7, is equal to the applied stress on
the segment, 7.. The nodal slip speeds that satisfy
this condition are simultaneously determined it-
eratively, using a predictor—corrector method.
Every iteration begins with a trial 7f, where k
indicates the k-th iteration. The first iteration
begins with 7-} set equal to the known nodal
stress at the beginning of the step obtained from
eq. 31. The trial slip speed, 8% . that yields a

trial?
frictional resistance equal to 7§ at the midpoint

of the step is calculated from the constitutive
relations. This calculation employs the explicit
constant & solution (eq. 6) of the evolution equa-
tion to evolve from the known value of 8 at the
beginning of the step. The nodal stresses at the
midpoint of the time step, T: , are then calculated
from eq. 31 using 8%, and the step duration At.
If |7f—7%|>7,,,, then another iteration is
performed using 7f*' = 7.,

This method is numerically stable and easy to
implement. For the simulations reported here,
Terror = 0.000050 and the time step solution gen-
erally converges after 2 iterations. The solutions
are insensitive to the size of the steps, provided

A6 <0.1D, and provided At <0.540 /7.
Results of numerical simulations

The simulations employ the simplified consti-
tutive law (eq. 3) with evolution law eq. 5, unless
specified otherwise. Also, unless specified, the
stressing rate 7 is zero and the initial stress at the
start of the simulation is set above the steady-state
friction (7° > o) to insure self-driven accelera-
tion of slip to instability. This is roughly equiva-
lent to imposing a stress step that moves a previ-
ously locked fault across the steady-state bound-
ary and into the field where creep instability
begins. Several series of simulations were also
performed with 7 # 0 permitting the conditions to
evolve across the steady-state boundary from be-
low. In all simulations, initial 8, is 10° s (~ 31.7
years), Poisson’s ratio is 0.25 and G /o =104
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Figure 3 illustrates results with uniform initial shear stress and displacement. respectively. The
conditions and uniform normal stress. The fault time steps .are not constant; bul decrease ‘as the
patch consists of 299 nodes. Figures 3a—3c give slip speed of the fastest node increases. In . this
profiles, at successive time steps, of slip speed. example, every 50th time step is shown. Figure 3d

Log ( Slip speed/ D.)

0 209
Position ( 1 division = 100,000-D.)

50

40 |-

2
30 |

Fault slip (6 /0,)

0 299
Position ( 1 division = 100,0000,)

Fig. 3. Numerical model with 299 nodes (nodai spacing of 100,000 D_) and uniform initial conditions. Parameters for the

calculations are: A = 0.008, B=10.009, 8 =10 s, G=10* s, 7 =0, and initial shear stress 7= (uj+ 0.De. (@), (b). () give the

logarithm of slip speed, displacement and shear stress, respectively, as functions of position on fault, Position is scaled by D,. The

approximate width of the zone of accelerated slip, Zlc,'is obtained from eq. 15 with ¢ = 0.4 B. (d) gives the slip at the center of the

model. The vertical lines in (c) mark the maximum shear.on the time-step profiles and illustrate the contraétion of the most active
portion of the crack with increasing time.
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)

76 |
75t
74 ¢
73+
a2t
1+
70
.69 |
.68
87 |
66
65 I

.64
.63

Shear stress / normal stress

21,

299

Position ( 1 division = 100.000 D.)

30

(d)

Faultslip (6/D,)

0 10.000 20.000

30.000 40.000 50.000

Time. seconds
Fig. 3. (continued)

gives the displacement vs. time of the node at the
center of the segment. This displacement history
is characteristic of all simulations that reach the
instability condition.

An interesting feature of the numerical model
is that the most rapidly slipping portion of the
fault patch constricts to a sub-patch (Figs. 3a and
3¢). The development of a sub-patch is character-
istic of simulations with plane strain or anti-plane

strain. The length of the sub-patch correlates
with the critical stiffness of eq. 29, i.e. £=B in
eq. 15. However, the length of the sub-patch at
instability is always longer than the predicted
minimum patch length, 2/ , obtained using £ = B.
A generally satisfactory empirical representation
of the sub-patch half-length is obtained from eq.
15 using £~ 0.4B. Figure 3 and the following
figures show /_ from eq. 15 with ¢ = 0.4B.
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As suggested by eq. 29, the numerical results
demonstrate that instabilities can nucleate when
A —B >0 (velocity strengthening), given suffi-
cient perturbation of stress above the steady-state
friction. Qualitatively, the simulations with 4 — B
> (} are similar to those with 4 — B <0, includ-
ing the development of a sub-patch with dimen-
sions that scale by eq. 15 using & = 0.4B. How-

FHODITETERICH

ever, if the fault is rate-strengthening, and if the
initial stress is not sufficiently high relative to. the
steady-state friction, then aecelcmting slip termi-
nates and the condition for instability is not
reached.

Figure 4 illustrates results of models with uni-
form initial 8, uniform normal stress-and random
initial shear stress, distributed uniformly between

4
{a) 21,
5 2l
n
2 A
i\
1 /
0

Log (Slip speed/ D,)

Log (Slip speed/ D;)

Position ( 1 division = 200.000 D)

Fig. 4. Numerical model with 300 riodes and randomized initial shear -stress. Parameters for the calculations arer A = (1004,
B = 0.006, 8 = 10° 5, G = 10%, 7 =0, and initial shear stress from (uj + 0.06)o 10 {p, + 0.08)s. The logarithm of shp speed for
faults with different values of D -is indicated.
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Log (Slip speed/ D)

T

300

Position ( 1 division = 100.000 D)

{d) 4 21,
3 |

Log (Slip speed/ D.)

Position ( 1 division = 50.000 D.)
Fig. 4. (continued)

7= (u}y +0.06)0 and 1 = (uy + 0.08)c. Except for
the magnitude of D_, the parameters employed
for the simulations of Figure 4 are identical (4 =
0.004, B = 0.006, 8, = 10°>). Because of the
non-uniform initial stress, initial slip speeds are
also non-uniform.

As with the uniform initial stress models, the
dimensions of the unstable sub-patches in each
heterogeneous stress model correlate with [, of
eq. 15 with £=0.4B. Note, that each of the

following examples employs different values of B
and A —B to establish that /, scales by B and
not by A or some combination of 4 and B.
When D, is varied, the zone of most rapid slip
also changes according to eq. 15. Also, note in
Figure 4 that the initial heterogeneity of slip
speed quickly becomes smoothed at spatial wave-
lengths somewhat less than /.. This is also re-
flected in an initial smoothing of the shear stress
profiles. At longer wavelengths there is growth of
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the slip speed heterogeneities. Because of the
very rapid acceleration, the slip in one region
soon outpaces the other arecas of local accelera-
tion.

Figure 5 gives an example of a simulation with
uniform initial shear stress and uniform 1nitial ¢
and heterogencous normal stress randomly dis-

P DIETERICH

tributed between o = 0.957 and .« = 1.050, wher¢
o is the mean normal stress. -For the models
illustrated in Figure 5. different values of
were employed and the other parameters were
the 0.005, B = 1008, 8, - 10% ).
Again, B and B — A, for this sgt of simulations:
differ from the values used for the models of

same (A4 =

4
(a)
3

Log (Slip speed/ D)

<

Position { 1 division = 500,000 D)

Log (Slipspeed/ D,)

® /

300

Position ( 1 division = 200.000 D¢)

Fig. 5. Numerical model with 300 nodes and randomized normal shear stress and uniform initial shear stress. Paraﬁmreters for the

calculations are: A = 0.005, B = 0.008, 8 = 10Y 5, G = 1% 7 = 0, uniform initial shear stress of (g} -+ 0.095)F and normal stress

from o = 0.955 to o = 1.055, where & is the mean normal stress. The logarithm of slip speed for faults with different values of. D,
is indicated.
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4
(c)
3

Log ( Slip speed/ D.)

Log ( Slip speed/ D.)

300

Position ( 1 division = 50.000 D)
Fig. 5. (continued)

Figures 3 and 4. The results with heterogeneous
normal stress are similar to the results obtained
using heterogeneous shear stress. Spatial varia-
tions of slip speed at wavelengths less than [,
rapidly become smoothed and the sub-patch size
at the onset of instability approximately equal to
[, with £=04B.

The principal new finding, from the numerical
models, is the development of a sub-patch that

accelerates to instability. Attempts to force accel-
erated slip over longer lengths, by setting a higher
initial shear stress along a longer patch, resulted
in progressive constriction of the most rapidly
slipping portion of the fault, with increasing dis-
placement. Patch dimensions greater than /_ (with
£=04B) were observed under two circum-
stances. (1) The initial stress is close to u .. In
this situation, it appears that instability occurs
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21,

Log (Slipspeed/D,)

Position ( 1 division = 70.000 D.}

Fig. 6. Numerical model with 299 nodes showing spread of zone of rapid slip. Parameters for the caleulationns arer A &= 0.00%:

B =10.009, 8= 10%s, ¢ = 10%, ¥ =0, and uniform initial shear stress r = (g}, + 0.04). Initially, slip concenirates in & zone with

half-length corresponding to eq. 15 with ¢ = .48, then begins to expand. When the zone of rapid slip resches the ends of the

model, slip begins to decelerate. The initial shear stress for this calculation is near the steady-state stress, (L62o - Uhe crtical length
for unstable slip from steady-state sliding from eq. 15 and using &£ = B — 4. 15 190 division-.

Log ( Slip speed/ D)

Position (1 division = 50.000 D,)

Fig. 7. Numerical model with 299 nodes and uniform initial conditions. This model employs alternative evn!utyin»ngquat‘ioa 7 instend

of eq. 5. Constitutive parameters for the calculations are -identical to those of Figure 3, with 7 =0 and. initial shear siress

7 = (u), + 0.08)or. The length bar gives the width, 2., obtained from eq. 15, with £ = 6.48. Note that the dimension of the zone that
nucleated slip is much less than that found using evolution law 5.
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before sufficient slip can occur to permit develop-
ment of the sub-patch. (2) Low initial stress, close
to u, with stressing rate at or near to zero. In
this case, the most rapidly slipping zone constricts
to a sub-patch, but then begins to enlarge with
increasing slip. The lengthening appears to be
related to the approach of @ to steady-state along
the most rapidly sliding portion of the fault. Near
steady-state, the critical stiffness for instability is
given by ¢ =B — A instead of ¢ = B. Hence the
critical half-length for instability is greater near
steady-state. In extreme cases, if the total length
of the model is not much longer than /. with
& =B — A, the sub-patch expands to fill the slip-
ping segment and the acceleration of slip stops
(Fig. 6).

A limited series of results were obtained using
the alternate evolution equation 7. Use of eq. 7 in
these simulations yields results qualitatively simi-
lar to those discussed above. However, total pre-
monitory displacements are smaller and the sub-
patch is significantly narrower than that found in
the models that used evolution equation 5 (see
Fig. 7).

Comparison of numerical results with the simple
model

The numerical results provide a test of the
solutions for a simple patch and the simplifying
assumptions that were employed.

Figure 8 compares the solutions for the time to
instability from the simplified fault patch model
(egs. 26, 27) with times calculated using the 2D
numerical model, assuming uniform initial stress.
For this comparison, the patch stiffness, k, for
the solution was evaluated using eq. 14 with / set
equal to the half-length of the fault in the numer-
ical model and n =2/3, i.e. the factor for con-
stant shear stress crack in plane strain (Table 1).
Over the range of conditions illustrated in Figure
8, the times to instability given by the simple
model generally differ from the corresponding
numerical results (open symbols) by 2% or less.
However, the patch solution diverges significantly
from the numerical results for the case 7+ =0 for
initial stresses near u. In this region, the numeri-
cal results form an asymptote to the u, line. This
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difference arises from a breakdown of the as-
sumption & > D,_/90, used for the patch solutions.
The results for 7+ 0, are in close agreement with
the numerical model even for initial stresses sub-
stantially below u ., where the condition 8 > D, /0
is not satisfied. The success of the simple model
in this range is apparently due to negligible evo-
lution of @ as it is driven across the steady-state
boundary by the external stressing, 7.

At stresses near p,,,,, giving times to instabil-
ity <1072 s, the numerical results for the time to
instability differ from the patch solutions by as
much as 20%. The cause of this discrepancy is
not known and has not been investigated as it
seems of little practical interest.

A series of numerical results, using the full
constitutive relation (eq. 2), with rate cut-offs,
was obtained to evaluate the possible errors in-
troduced through the use of the simplified consti-
tutive relation (eq. 3) with the simple patch model.
As suggested by the earlier discussion, for these
problems where 6/b> 1 is large, the results
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Fig. 8. Comparison of simple patch solution, continuous curves
and numerical results (symbols) for time to instability. Param-
eters for the calculations are: A4 = 0.008, B = 0.009, no=0.56,
6 =10 s, G = 10%. In the numerical model, the initial stress
is uniform and the total half-length of the model is 2.5x 107
D.. The stiffness used for the patch solution was obtained
from eq. 14 and used / = 2.5% 107 D,. Open symbols give the
numerical results using the simplified form of the constitutive
law (eq. 3). At times to instability (of < 107! s), the numerical
results obtained using the full constitutive law (eq. 2), with
b= D, /s, begin to diverge from the results obtained with eq.
3 (solid squares).
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results using the mean initial shear stress on the section of the
fault that eventually nucleated the instability.
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relation 2 with b= 1.0 D_/s. The maximum dif-
ference in’the time to instability obtained using
the different constitutive relations is about 0.01 s
which again seems of little practical interest.
The displacement given by eqs. 22 and 23
shows agreement with the numerical model iha{
is comparable to that of the time-to-instability
results. That is, the displacement of the center
node of the numerical model at -some time ;. is

equal to the displacement given by cq. 22 o1 23.at
tlme T where (T —(}/T1 <002, The charac-

tic form ot the solution is well-represented by
thc numerlcdl rcsult of Figurc 3d. The patch
solutions diverge from the numericial results for
initial stresses in the vicinity of w.. when the
stressing rate is zero, because of a breakdown of
the assumption & > D_/6.

Figure 9 compares the time to mstability from
the numerical model and using the alternate ¢vo-
Jution equation 7 with the patch solutions. The
results are qualitatively similar, but differ quanti-
tatively.

Figure [0 compares the results for the model
with heterogencous initial siress with the patch
soiutions. In this comparison, the open svmbais
define the shear stress as-the mean of the-initiai

es over the entire fault. Fhe ugrecmem ‘of
he model with the patch solutmn (Lq 27) ap-

—

section of fault that nuclcates the instability has a
higher initial stress than the mean initial stress of
the entire fault. Better dgreement between the
numerical results and the patch solution is ob-
tained using the local mean of the initial stress on
the section of the fault that nucleated the insta-
bility (solid .symbols in Fig. 10).

Discussion

The extent to which the resulis presented here

Anoreile s g PERTS PPN [y S P DYC P
Uescrioe tne ltlll.l Uanc llULlCd(‘lU[l (9 TOCESS ac-

e
pends on the applicability of the rate- and sta

constitutive formulation to fn:lr& in nAturp ]hl\

question-cannot be answered -definitively at this
time, but several lines of evidence suggest that
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faults have properties of the sort characterized by
this formulation. First, controlled sliding experi-
ments using laboratory faults have shown that the
properties described by the rate- and state-de-
pendent formulation are characteristic. Similar
results are observed for bare faults and faults
with gouge, under wet and dry conditions. Sec-
ond, laboratory faults exhibit a rich variety of
sliding phenomena, apparently analogous to faults
in nature, that include steady creep, simple or
chaotic oscillatory creep, and unstable slip that is
preceded by an interval of accelerating creep.
These sliding behaviors, and their transitions to
other behaviors, have been modeled quantita-
tively, using rate- and state-dependent constitu-
tive formulations. Third, this type of governing
relation for fault strength has those properties
that seem to be required of faults in nature,
including slip weakening at the onset of unstable
slip, instantaneous rate strengthening that is
characteristic of rocks and spontaneous ‘healing’
that restores strength following unstable slip.

In view of these considerations it is argued
that constitutive properties of the type discussed
in this paper govern the earthquake nucleation
process. However, the constitutive constants and
functional descriptions may be poorly defined for
the conditions and time scales characterizing the
slip of faults in nature. For example, processes
such as solution transport and cementation may
enhance the healing rate, i.e. state-dependency,
at longer time scales. Also the results obtained
using different evolution equations, while qualita-
tively similar, differ quantitatively, further illus-
trating uncertainties in the formulation. Hence,
the results presented here probably should be
regarded as a plausible, but qualitative, picture of
the earthquake nucleation process.

The present study confirms and expands upon
the earlier results of Dieterich (1986) that were
based on numerical solutions of a single spring
and slider approximation of a fault patch. It is
found that the displacement history and time to
instability for the simple model are not signifi-
cantly different from the numerical results, in-
cluding models that employ heterogeneity of fault
stresses. The solutions presented above are for
the simple case, in which the stress is applied to
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some level, followed by stressing at a constant
rate. However, it is worth noting that these solu-
tions may be applied, piecewise, to follow compli-
cated stressing histories.

A characteristic interval of self-driven, acceler-
ating fault creep, in the nucleation zone, leads to
slip instability. This accelerating creep occurs in
the stress interval between the steady-state fric-
tion, p,, and the maximum friction, wu,.. The
principal new finding from the numerical model
is the spontaneous development of a localized
zone, or sub-patch, on which slip most rapidly
accelerates. The dimensions of the sub-patch ap-
pear to scale by the relation for /. (eq. 15). If
conditions on the sub-patch are well removed
from steady state, the appropriate scaling follows
/. obtained using £ = 0.4B.

The curves of Figure 8, obtained with finite
stressing rates, illustrate an interesting transition
in the dependence of the time to instability on
stress. At low stresses, below steady-state friction,
changes in stress result in approximately linear
changes in the time to instability. However, as the
stress increases relative to the steady-state
boundary, the dependence of time to instability
on stress undergoes a transition to a linear de-
pendence of the logarithm of the time to instabil-
ity. From eq. 27, and as noted by Dieterich (1986),
the slope of stress vs. In ¢, equals —A4. This slope
is also approximately obtained using the alterna-
tive evolution equation (Fig. 9), suggesting this
property is insensitive to details of the evolution
law employed.

The duration of the nucleation process can be
quite long. For example, the time-to-instability
solution at zero stressing rate (eq. 27) intercepts
the w, line at ¢, approaching 8 (see Fig. 8).
Recall, from evolution equation 5, that if the
fault has remained fully locked, 8 is equal to the
elapsed time from the last earthquake.

These results suggest a picture of earthquake
occurrence in which a seismic region has a con-
tinuous supply of sub-patches to nucleate earth-
quakes. These sub-patches form and evolve from
the heterogeneity of conditions and local stress
build-up. At any given time there will be numer-
ous sub-patches that are at various stages of the
localized slip acceleration process. The stressing
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history. experienced by a sub-patch might- ideally
consist of a constant background stressing rate,
punctuated by stress steps at the time of nearby
earthquakes. Because of the logarithmic depen-
dence of the time to instability on stress in the
later stages of the nucleation process, the timing
of earthquakes will be very sensitive to perturba-
tions of the stressing history. As discussed by
Dieterich (1986) a population of patches that
yields a constant rate of seismicity under constant
stressing rate, will, following a step increase of
stress, produce a higher rate of earthquakes that
decays by the 1/t Omori law of aftershock decay.
A paper is in preparation that applies the solu-
tions presented here to the effects of stressing
history on seismicity rates.

The result yielding a minimum patch dimen-
sion for unstable slip appears similar in many
respects to the familiar fracture mechanics result
for critical crack length for unstable crack growth.
In each case, there is minimum crack size for
instability, and in each case, if the crack is less
than the critical size, an instability can occur only
if crack grows to the critical dimension. Also, the
rate- and state-dependent constitutive law yields
a rate-dependent apparent fracture energy for
initiation of slip at a crack tip that is analogous to
the rate-dependent fracture energy for sub-criti-
cal growth of tensile fractures.

However, there are fundamental differences
between the frictional and crack growth instabili-
ties that appear to be of importance for applica-
tions to earthquake nucleation. The unstable
crack solutions assume constant stress on the
walls of the crack and fracture energy at the
crack tip controls crack elongation. Conversely,
for the nucleation of frictional instability, de-
scribed here, the stress does not remain constant
on slipping surfaces. Instability is controlled by
rate- and state-dependent resistance to slip on
the entire slipping fauit patch. In the former case,
instability pertains to crack growth, while in the
latter, instability pertains to slip rate. A slip insta-
bility can occur under conditions of constant stiff-
ness which is equivalent to instability on a patch
of fixed size. The numerical models indeed
demonstrate that slip instability can develop as
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the most active portion of the patch is constrict-
ing—a result that is not anticipated from-fracture
mechanics treatments.

Okubo (1989) employed the author’s computer
code and approach for quasi-static nucleatijon,
described above, with a code for dynamic rupture
propagation, to simulate the full ecarthquake cvcle
on a fault with-rate- and state-dependent friction.
The transition from quasi-static accelerating creep
to earthquake rupture was accomplished by using
the nodal stress, slip, slip speed and state from
the final static time-step calculation as the start-
ing point of the dynamic calculation. Okubo found
that for the dynamic calculations, slip accelerated
smoothly and spontancously from the quasi-static
solutions to initiate essentially crack-like dynamic
rupture propagation. For the initial stageés of the
dynamic calculation, Okubo observes: “Once -the
critical fault patch is established, the rate .of
rupture extension quickly reaches the- Rayleigh
wave speed.”

Similar results for the initial stages of dynamic
rupture growth are reported for stick-slip experi-
ments (Dieterich, 1980; Okubo and. Dieterich,
1984; Okubo and Dieterich, 1986; Ohnaka ¢t al.
1986; Ohnaka and Kuwahara, 1990). Those-exper-
iments show that in the interval beginning about -
| ms prior to rapid rupture propagation (speeds
> 1 km/s), slip in the nucleation zone acceler-
ates and spreads, but at significantly slower rup-
ture speeds. The slip rates during this phase arc
characteristically in the range of 2-10 mm/s.
Normalized by D_, these slip speeds are roughly
> 1 x 10°D_/s, which is beyond the cutoff speed
for the quasi-static analysis reported here. De-
tailed experimental data for .the much earlier
quasi-static phase of nucleation considered-in this
study, when the numerical models predict that
the zone of rapid slip constricts, do not appear to
be available.

The development of a charaeteristic dimension
of the nucleation zone prior to instability, and
solutions for displacement on the- patch, may
provide some constraints on the moment M, =
(G#8) (area) of premonitory slip. From the dis-
placements given by eq. 23 and assuming the
zone of-acceélerating slip. forms- a circular patch
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with radius given by eq. 15, the moment in the
interval ¢, before the instability to ¢, before
instability is:

AD,
G3rnAD? (B - £)8, Th
M()=(3—§)§0'2 n 1¢1Dc . +12 (34)
(B—¢)3,

Figure 11 plots eq. 34 for the interval ¢, = 10,000
s before instability to ¢, = 10 s before instability,
using representative values for the parameters as
given in the figure caption. Figure 11 illustrates
the dependency of premonitory strain changes in
the nucleation zone to the characteristic displace-
ment D.

Based on laboratory measurements of D_, Di-
eterich (1986) noted that strain from premonitory
creep in the nucleation zone might be very diffi-
cult to detect as an earthquake precursor. In
Figure 11, using D, of 5 X 107> m, which is near
the upper limit of the laboratory observations,

Log [Moment (Nm)]

Log [D,(m)]

Fig. 11. Log,y of the moment of premonitory slip in the
interval from 10,000 s from instability to 10 s before instability
from eq. 34. Parameters used for this plot are: A4 = 0.005,
B=0007, £=04B, n =37 /24, G=15,000 MPa, and §,=
0.01 m/s. Contours of r give the radius of the nucleation
zone (from eq. 15). The dashed vertical line, with arrows,
shows the approximate upper limit of D observed in labora-
tory experiments. The dashed horizontal line, with arrows,
gives the approximate lower limit for detection of precursory
strain signals from the earthquakes reported on by Johnston
et al. (1987).
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the expected radius of the nucleation zone is
small, 20 m or less, and the moment of premoni-
tory slip is 10'° Nm or less. Johnston et al. (1987)
report a failure to observe evidence of premoni-
tory strain prior to moderate earthquakes that
occurred near high-resolution borehole strain
meters. The upper limit of strain precursors that
would escape detection in their observations was
about 10'> Nm, which is consistent with the con-
clusion based on laboratory observations of D,.
However, the scaling of D_ to faults in nature
remains an open question. In the laboratory, D,
varies with surface roughness and gouge particle
size, but the experiments cover a relatively nar-
row range of conditions.
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