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Abstract 

Dieterich, J.H.. 1987. Nucleation and triggering of earthquake slip: effect of periodic stresses. In: R.L. Wesson (Editor), 

Mechanics of Earthquake Faulting. Tectonophysics. 144: 127-139. 

Results of stability analyses for spring and slider systems, with state variable constitutive properties, are applied to 

slip on embedded fault patches. Unstable slip may nucleate only if the slipping patch exceeds some minimum size. 

Subsequent to the onset of instability the earthquake slip may propagate well beyond the patch. It is proposed that the 

seismicity of a volume of the earth’s crust is determined by the distribution of initial conditions on the population of 

fault patches that nucleate earthquake slip, and the loading history acting upon the volume. Patches with constitutive 

properties inferred from laboratory experiments are characterized by an interval of self-driven accelerating slip prior to 

instability. if initial stress exceeds a minimum threshold. This delayed instability of the patches provides an explanation 

for the occurrence of aftershocks and foreshocks including decay of earthquake rates by time-‘. A population of 

patches subjected to loading with a periodic component results in periodic variation of the rate of occurrence of 

instabilities. The change of the rate of seismicity for a sinusoidal load is proportional to the amplitude of the periodtc 

stress component and inversely proportional to both the normal stress acting on the fault patches and the constitutive 

parameter, A,, that controls the direct velocity dependence of fault slip. Values of A, representative of laboratory 

experiments indicate that in a homogeneous crust, correlation of earthquake rates with earth tides should not be 

detectable at normal stresses in excess of about 8 MPa. Correlation of earthquakes with tides at higher normal stresses 

can be explained if there exist inhomogeneities that locally amplify the magnitude of the tidal stresses. Such 

amplification might occur near magma chambers or other soft inclusions in the crust and possibly near the ends of 

creeping fault segments if the creep or afterslip rates vary in response to tides. Observations of seismicity rate variations 

associated with seasonal fluctuations of reservoir levels appear to be consistent with the model. 

Introduction 

This study applies a previously described model 

for the nucleation of the earthquake instability 

(Dieterich, 1986) to questions related to the trig- 

gering of earthquakes by periodic loads such as 

earth tides or loads arising from cyclic filling and 

draining of reservoirs. This model is based directly 

on laboratory observations of fault constitutive 

properties. Of specific interest is the possible role 

fault constitutive properties have in controlling 

the degree of correlation between seismicity rates 

and periodic loads. Other aspects of fault interac- 

tions are not treated or have been considerably 

simplified. 

In the previous study (Dieterich, 1986) the in- 

corporation of velocity- and state-dependent con- 

stitutive properties (as observed in laboratory ex- 

periments) into a model for the nucleation of 

unstable slip was found to introduce a delay be- 

tween the time the applied stress reached a critical 

state and the time of the resulting unstable slip 

event. Additionally, it is found the fault is capable 

of temporarily sustaining a load in excess of the 

minimum stress required to nucleate an instabil- 

ity. In that study it was proposed that mainshocks 
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following foreshocks and aftershocks result from 

this type of delayed instability following stress 

steps associated with the prior earthquakes. Re- 

sults presented below for the nucleation of earth- 

quake slip in the presence of a periodic loading 

component indicate that the poor correlation of 

seismicity rates with earth tides can be explained 

by observed state- and velocity-dependent con- 

stitutive properties. Additionally, if values for con- 

stitutive parameters measured in the laboratory 

are representative of faults in nature, then the 

poor correlation between tides and earthquakes 

may be indicative of the stress level acting on 

faults in nature. 

Nucleation patch model 

The model for the nucleation of earthquake slip 

initiating on an embedded fault patch has been 

outlined previously (Dieterich, 1986). Here we 

briefly review the nucleation patch model and the 

fault constitutive properties it employs. Additional 

discussion of the model and applications to the 

scaling of premonitory fault creep and to fore- 

shock and aftershock sequences are given by Diet- 

erich (1986). The fault constitutive properties are 

based directly on laboratory experiments which 

have demonstrated ubiquitous velocity-, time-, and 

displacement-dependence of fault strength. These 

properties are well-represented by state variable 

constitutive laws. Experimental results and char- 

acteristics of the constitutive law are discussed in 

detail by Dieterich (1979,1981), Rice (1983). Ruina 

(1983, 1985), Weeks and Tullis (1985) and Okubo 

and Dieterich (1986). 

Displacement-dependent effects in experiments 

and in the constitutive law used to model the 

initiation of unstable fault slip scale by a char- 

acteristic slip distance, DC. Throughout this paper 

fault displacements, d, and slip velocity, u, are 

normalized by the characteristic slip distance and 

are indicated by capitalized letters: 

D = d/D, V = u/D, (1) 

We represent fault strength as a coefficient of 

friction. p, defined by: 

/l = r/0 (2) 

where 7 is the shear stress acting across the fault 

and u is the normal stress. Throughout, CJ is 

considered to be constant during slip. The con- 

stitutive law for ~1 is: 

P=Po+B1 ln[B,B+ l] -A, ln[(A/V) + l] 

(3) 

where pO, A,, A,, B,, and B, are experimentally 

determined parameters, V is the normalized slip 

speed and 0 is the state variable that depends on 

slip history. It is noted that eqn. (3) is equivalent 

to that of Dieterich (1979, 1981) with the distinc- 

tion that the earlier forms employ somewhat awk- 

ward quotients that are well represented by eqn. 

(3). At V and 0 well removed from the rate limits 

(i.e., B,6 >> 1, A,/V > 1). eqn. (3) is exactly 

equivalent to that employed by Ruina (1980. 1983) 

and later by several other investigators. 

Sliding history effects and consequently dis- 

placement- and time-dependent effects are repre- 

sented by the variable 8 which has been interpret- 

ed (Dieterich, 1979; Dieterich and Conrad, 1984) 

as the average age of the load supporting contacts 

between the sliding surfaces. Because contacts are 

destroyed and created during slip, 0 depends on 

the slip history. The following law for the evolu- 

tion of 0 has been discussed by Ruina (1980) and 

employed by Dieterich (1981, 1986): 

dd/dt = 1 - 8V (4) 

From eqn. (4) note that for a locked fault V = 0, 
de/dt = 1 and consequently the change of 8 is 

equal to elapsed time. Because the large and rapid 

displacements of an earthquake will reset 0 to 

values approaching zero, a fault that has remained 

locked since the previous earthquake will have 8 

approximately equal to the time interval from the 

earthquake. In the simulations discussed below, 

values of 8 are associated with the interevent 

times of earthquakes and values in the range from 

10’ to 1O’O s are employed. 

It is useful to define two special cases of eqn. 

(3) for discussion of slip instability. Under steady 

state conditions, d8/dt = 0 and V= l/e, which 

yields from eqn. (3) the steady state friction pS: 

CL, = p0 + B, ln(B,/V+ 1) -A, ln(A,/V+ 1) 

(5a) 

or equivalently: 

P, = p. + B, ln( B,B + 1) - A, ln( A,0 + 1) (5b) 
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Fig. 1. Plot of maximum friction, pm_, and steady state 

friction, p,, against the state variable 8. Under conditions of 

constant stress, p, slip speed and 6’ will remain constant only 

at p = p,. Under conditions of p > pS and constant stress, slip 

speed will accelerate and fI will decrease with time. When 

p =p,,,_ instability occurs. The stress range pmax > p > pL, 

defines the conditions under which self-driven accelerating slip 

ending in instability may occur. At p -C p,, under conditions of 

constant stress, slip speed decreases and 8 increases. The 

arrows indicate the direction in which t9 evolves at stresses not 

at IL,. 

Under sliding conditions where B,/V z+ 1 and 

A,/V Z+ 1 in eqn. (5a) the contribution of the 

summation with 1 in the logarithmic terms be- 

comes negligible and eqn. (5a) may be written as: 

ps=&+(A1--B,)lnV (6a) 

where: 

t~h = cl,, + B, In B, -A, In A, (6b) 

This eqn. (6a) is the form given by Ruina (1980, 

1983) and employed by several others for the 

velocity dependence of the steady state friction. 

The maximum limit of frictional strength, pmax, 

occurs when VX=- A2 with the result that eqn. (3) 

becomes: 

~rnax=~~o+Bi log(B#+l) (7) 

At stresses (i.e., p = T/(J) between ps and CL,,,,,, 

fault slip speed is greater than the steady state 

speed. As p approaches pmax, V approaches infin- 

ity. In the quasi-static analysis employed below, 

instability occurs at the instant the applied stress 

reaches the limiting strength pmax. The process by 

which p reaches p,,,, inevitably involves decreas- 

ing prna, because accelerating slip results in evolu- 

tion of 8 to smaller values. Dieterich (1979, 1986) 
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Koslov and Liu (1980) and Gu et al. (1984) show 

that self-driven acceleration of slip to instability, 

without additional externally driven loading, can 

occur in the range prnax > p > pcL,. See Fig. 1. 

Results of stability analyses for spring and slider 

systems with these constitutive properties, when 

applied to slip on faults embedded in an elastic 

medium, show that unstable slip may initiate only 

on fault patches that exceed some critical size 

(Dieterich, 1986). Slip on patches less than the 

critical size is always stable. For a circular patch 

the critical patch radius, r,. is approximately: 

7rGD, 
r.= 3izy ‘ (8) 

where G is the shear modulus and [ is a parame- 

ter obtained from spring-slider stability criteria. 

The results of Ruina (1980, 1983) and Rice and 

Ruina (1983) for the critical stiffness for instabil- 

ity from perturbation of slip at p = pL\ yield 5 = 

(B, - A,). For sliding above the steady state fric- 

tion (p > Pi) the Ruina and Rice value for 5 is a 

lower bound. The previous study (Dieterich, 1986) 

shows that slip instability can arise on a patch of 

fixed size and that patch size only weakly affects 

the slip history as long as r > r,. Slip history is 

controlled by the constitutive properties. 

The previous results lead to a central notion of 

the approach presented here: conditions on the 

fault patch where the instability originates control 

the timing of the earthquake instability. It is pro- 

posed that within a seismically active volume of 

the earth’s crust there exist a population of poten- 

tial nucleation patches. Characteristics of the dis- 

tribution of conditions on the population of fault 

patches where earthquake slip nucleates and the 

loading history determine the details of occurrence 

rates of earthquakes originating within the volume. 

Subsequent to the onset of the earthquake insta- 

bility within the nucleating patch, the instability 

may propagate well beyond the patch. Processes 

associated with rupture propagation, not ad- 

dressed by this model, control the size of the 

earthquake. 

For the sake of simplicity it is assumed that the 

nucleating fault patch is embedded in a homoge- 

neous elastic medium, adjoining portions of the 

fault are locked prior to the onset of the instabil- 
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ity, and physical properties and slip conditions on 

the center of the patch are sufficient to char- 

acterize the problem. Under these assumptions the 

equations governing slip on the patch are identical 

to those governing a simple spring and slider 

system. Possible interactions between nearby 

patches are not treated. 

For the computational results presented below, 

the model for a nucleation patch is represented as 

a single slider attached to spring with a constant 

stiffness. The fault obeys the constitutive law (3) 

and the evolution law of eqn. (4). The computa- 

tions employ normalized displacements and veloc- 

ity for the fault, D and V, respectively. Velocity of 

the load point attached to the spring V, is also 

normalized by DC. Stress acting perpendicular to 

the sliding surface, a, is constant during slip per- 

mitting the shear stress acting on the surface and 

fault frictional strength to be normalized by u. 

Because the analysis is for quasi-static motions, 

the applied stress equals the friction at all times. 

The normalized shear stress, p’, acting on the 

patch is: 

~‘=~+t(~Lr-D)+Ssin(t/P) (9) 

At t = 0, D = 0, and p= p’. Note that the periodic 

loading component is treated here as a simple 

sinusoid. K is the normalized patch stiffness: 

K = hGDJ24ar (10) 

The radius of the patches employed for the com- 

putations described below is expressed as a factor 

of the critical radius for steady state sliding, r,. 

To follow the evolution of slip on the patch, the 

computations employ a time marching procedure 

to find slip velocity. Slip is treated as a series of 

constant velocity time steps. The solution for the 

unknown slip velocity during each time step satis- 

fies the condition that the average frictional resis- 

tance equals the average stress applied by the 

spring during the time step. The average friction 

and applied stress during the step are obtained by 

numerical integration. The evolution of 8 during 

the time step is given by the constant velocity 

solution of eqn. (4): 

8 = l/1/+ (0, - l/V) eCD (11) 

where 8 = 0, at D = 0. Use of eqn. (11) has been 

found to satisfactorily represent evolution of 19 

a3 

-101 

-10' 

/ 

Timell2.!5hr/div) 
0 

Fig. 2. Slip speed plotted against time from numerical compu- 

tations in which the amplitude of the periodic loading compo- 

nent, S, was 5 x lo-‘, 5 x 10m4, and 5 X lo-’ for a, b, and c, 

respectively. Note that the amplitude of the slip speed vari- 

ations caused by S may be obtained directly from eqn. (3). The 

constitutive parameters are A, = 0.003, A, = 1.0, B, = 0.006. 

and B, = 1.0. 

under conditions of varying slip rate subject to the 

conditions that small displacement steps are 

employed and that the change in slip rate between 

steps is sufficiently small. The computational ap- 

proach employed maximum displacement steps of 

0.040 with a maximum change of slip rate AV/V 

= 0.05. Use of smaller steps did not alter the 
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Fig. 3. Delayed instability following application of initial stress (p - pS)O for different loading point velocities. The constitutive 

parameters were chosen to be representative of the experimental results: B, = 0.015/2.3. A, = 0.010/2.3, and A2 = 1.0. At the time 

the initial stress is applied 0 = 10’ s. The radius r = lOr,. Loading point velocities are V, = 0, lo-‘, 10e6, 10m5. and 10S4 for the 

curves labeled A, B, C, D, and E. respectively. The broken line is the fit to the solution by eqn. (3). From Dieterich (1986). 

results. An instability occurs whenever the applied 

stress exceeds p max. 

Figure 2 illustrates the results for slip velocity 

as a function of time for different amplitudes of 

the periodic loading component S. The period for 

this example is 12.5 hrs. Note that the logarithm 

of the instantaneous slip velocity prior to rapid 

acceleration is proportional to amplitude of the 

periodic stress. S, and to the constitutive parame- 

ter A,. 

The time to nucleate unstable slip in the ab- 

sence of a periodic load is given by Fig. 3. The 

figure gives the times to instability, t, following 

the application of an initial stress in the range 

p,,, > p> ~1,. Each curve was obtained from a 

series of numerical computations for the time to 

instability using different initial stresses and with 

fixed patch radius, constitutive parameters and 

initial 8. The different curves give the results for 

different loading rates, VL. Note that the loga- 

rithm of the time to instability shows a linear 

dependence upon the initial stress over a wide 

range of times. Similar results are obtained when 

the patch stiffness (radius) was varied. The time to 

instability decreases slightly as the patch radius 

increases. The difference in the logarithm (base 

10) of the times to instability for the limiting cases 

of r = r, and r = co is given by Dieterich (1986) to 

be about 0.2. These results and results from com- 

putations where r, 8, and the constitutive parame- 

ters were systematically varied all showed a linear 

dependence of initial stress and the logarithm of 

the time to instability over a large range of times. 

In this interval, the results can be fit to the follow- 

ing empirical equation: 

where C is a constant depending in part upon r. 

In eqn. (12) the quantity (p - ps)O is the initial 

difference between the applied stress and steady 

state friction and 0, is the initial value of the state 

variable. The broken line in Fig. 3 is a plot of eqn. 

(12). This fit to the numerical results provides a 

very good representation of the time to instability 

during the final stages of the process of accelerat- 

ing slip in the range of conditions where p > pa 

and the accelerating slip rates on the patch 

dominate over the loading of the patch by V,. The 

departure of the numerical solutions for t from 

eqn. (12) as /.L approaches pImsx is only a few 

seconds which for the purpose of this study is 

considered to be negligible when compared to 
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seismic interevent times or the loading periods 

employed. In the absence of externally driven 

loading, as the initial stress difference is decreased 

to zero, the numerical solutions for the time to 

instability diverge from the empirical fit and ap- 

parently go to infinity. For finite loading rates the 

times to instability are all finite. Note in Fig. 3 

that for a long interval of time prior to the insta- 

bility, eqn. (12) provides an excellent representa- 

tion of the numerical results and that the results 

are independent of the loading conditions. 

Population distributions and seismic@ rates 

We consider now the distribution of conditions 

for a population of nucleation patches within a 

volume of interest and the seismicity rates that 

would result from a loading history acting on the 

population. The following assumes that the con- 

stitutive parameters (A,, A,, B,, B,, and 0,) the 

patch radius and the loading history are the same 

everywhere in the volume. The quantities that vary 

over the population of patches are 8 and the 

applied stress p, which also vary as a function of 

time and patch slip as required by eqns. (4) and 

(9). The approach followed is to first establish the 

characteristics of the distribution of B and p that 

will yield constant rates of seismicity under condi- 

tions of constant loading rate (Vi_ = constant, S = 

0). Then, different loading histories are applied to 

the population to find the effect of the non-con- 

stant loading rates on the seismicity rates. 

A nucleation patch will creep at accelerating 

rate as the time of instability approaches. As a 

result, p and 0 on each patch will evolve as the 

slip accelerates. However, it is not necessary to 

completely describe the (p, 0) path followed by 

each patch to arrive at some conclusions about the 

distributions of ~1 and 8 yielding constant seismic- 

ity rates. 

For those patches at some sufficiently low ~1, 

the slip speed, V, obtained from eqn. (3) will be 

negligible when compared to the loading rate im- 

posed by V,. Under those conditions, the patch 

may be considered locked. For constant rate load- 

ing, prior to significant creep, the time to reach 

some reference stress state (j.~ - p,), is: 

(cl - PA = (I* - dJ + KVLl (13) 

where (CL - cl,>0 is the initial stress on some patch 

in the population at t = 0. For a uniform rate of 

seismicity, R: 

N= Rt (14) 

where N is the number of patches that have 

nucleated an instability in time t. It is reasonable 

to assume that each patch follows the same (p, 8) 

path, at least in some average sense. It follows 

then, for there to be constant rate of instability in 

the volume, the patches must reach not only in- 

stability, but any other (p, 0) point along the path 

at regular time intervals. Consequently, R is the 

rate at which the conditions on the patches pass 

any point in the path, including the arbitrary 

reference point (p - Pi),. For those patches that 

are locked, combining eqns. (13) and (14) to 

eliminate t yields the distribution of initial stresses: 

(~-IL,)O=(~~--CL,),-NN(KV,/R) (15) 

Consequently, prior to the acceleration of slip, the 

stresses on the nucleation patches, (p - pLs),,, at 

time t = 0 are uniformly distributed over the 

population of patches. 

Dieterich (1986) proposed that foreshocks and 

aftershocks arise from delayed instability on 

nearby nucleation patches following a stress step 

at the time of the prior earthquake. Specifically, 

effect of a stress step is to alter the condition of 

constant loading rate by imposing a step in the 

applied stress that shifts the stresses acting on the 

population of eqn. (15) upward by an amount 

sufficient to cause the self-driven accelerating slip 

that leads to an earthquake instability. The num- 

ber of earthquakes with time following a stress 

step is obtained by combining eqn. (15) with the 

result for the time to instability (12) which yields: 

N= R[(P-EL,),+&-C---t ln(&/t)] (16) 

KVt. 

where AP is the stress step. Differentiating eqn. 

(16) to obtain rate of instability following the 

stress step: 

dN A,R _=- 
dt KV,t (17) 

Equation (17) yields the familiar l/t decay in 

aftershock rates and the similar statistical relation- 
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ship found for the times of occurrence for fore- 

shock-mainshock pairs reported by Jones and 

Molnar (1976, 1979) and Jones (1985). 

To evaluate the effects of a periodic loading 

component it is important to note that the peri- 

odic loading perturbation operates continuously 

up to the instant of failure on each patch. As a 

result it is necessary to consider the distribution of 

conditions (B and _n) up to the time of failure. As 

patch slip rates accelerate approaching instability, 

the slip velocity dominates over loading velocity 

and evolution of B becomes important. Here we 

establish some characteristics of the distribution 

of conditions for a population of patches ap- 

proaching instability that will yield a constant rate 

of instability occurrence in the absence of a peri- 

odic load. Below, populations of patches having 

these properties are subjected to a shear stress 

with a periodic component. From the result of 

eqn. (12) the time to failure, t, may be expressed 

as: 

where the parameter $J is defined as: 

+ = %/exp[(fi - &/A11 (19) 

In eqn. (18) note that the time to failure is now 

given in terms of a single variable for the condi- 

tions on the nucleation patch. Combining eqn. 

(18) with eqn. (14) yields the dist~bution of + for 

a population of patches that produces a constant 

rate of seismicity in the absence of loading per- 

turbations: 

G=$&V%)+I] (20) 

This uses the definition from eqn. (18) that: 

exp( C/A, ) = to/Go 

Results for periodic loading 

The numerical computations for time to in- 

stability with a periodic loading component em- 

ploy the procedures previously outlined. A series 

of separate computations were made using differ- 

ent initial values for (* and B that satisfy the 

distribution of eqn. (20). The time interval sep- 

arating successive instabilities in the population 

yields the seismicity rate for that interval. Note 

that although the single parameter, 4, is sufficient 

to describe the distribution of conditions of the 

population needed to yield constant instability 

rates in the stress range where accelerating creep 

dominates, additional information is needed to 

fully describe the individual distributions of B0 

and p. Two end-member cases have been ex- 

amined. With the first, the initial 8, on all patches 

was taken to be the same, and (p- F,)~ was 

adjusted to satisfy eqn. (20). The second case fixed 

the initial (cl - pL,)* the same everywhere and ad- 

justed 6, to satisfy eqn. (20). The former case is 

quite artificial in that it is difficult to envision a 

situation in nature that would yield a population 

with these characteristics. The latter distribution, 

however, approximates that required for a popula- 

tion of patches having a very large radius com- 

pared to the critical radius. 

Each of the end-member cases yields constant 

time intervals between successive instabilities when 

the amplitude of the periodic load, S, is set equal 

to zero. When a periodic component is added to 

the loading condition, the time intervals become 

nonuniform. The results are identical for both 

distributions indicating that the parameter + is 

fully sufficient to describe those characteristics of 

the population that control the time to instability 

under different loading conditions. 

Figure 4 gives the results from a series of 

calculations with loading at a 12.Shr period to 

simulate the dominant component of the solid 

earth tide. Each simulation utilizes a different 

value for the amplitude S of the periodic load. For 

the series of simulations illustrated, the stiffness 

and loading velocity are zero and the constitutive 

parameters are: A, = 0.003, A, = 1.0, B, = 0.006, 

Bz = 1.0. The figure plots instability rate in the 

population as a function of time in the loading 

period. The instability rate is normalized by the 

average rate, R, over the 12.5-h period. Note that 

the maximum and minimum rates occur at the 

time of the maximum and minimum in the peri- 

odic signal. For the purpose of discussing these 

results the maximum change of instability rates 

over the loading cycle, R,, is defined as follows: 

R a = ( R max - R min I/R 

where R,,, and R,,, are the maximum and 
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Fig. 4. Rates of instability occurrence for a population of 

nucleation patches acted upon by a 12.5-hr periodic load with 

amplitude .S = 0, 1 X 10m5. 5 x 10K5, 1 x 10e4, 5 x 10m4. and 

1 x 10-j for the curves labeled A, B, C, D, E, and F, respec- 

tively. R,/R is the rate of occurrence of instabilities divided 

by the average rate, R, over the 12.5-hr period of the cyclic 

load. Constitutive parameters are A, = 0.003. A, = 1.0, B, = 

0.006, and Bz = 1.0. 

minimum rates, respectively, and R is the average 

rate. 

Rates of instability occurrence using a number 

*I 61 Rat10 Rat10 

0 0.002 0.006 105 l io5, 5 

A 0.003 0.006 lo5 A 105, 5, 1 

0 0.004 0.006 IO’ 0 105, 5 

V 0.008 0.009 IO5 v 105, 5 

12.5hr Cycle 

l 

‘0 0 0002 0 0004 0.0006 0 0008 0001 

s 

Fig. 5. Change of instability rate, (R,,, - R,,,)/R, as a 

function of amplitude S for 12.5hr periodic load. Legend 

gives the constitutive parameters and patch radius. The results 

are insensitive to AZ. B,. and B,. 

of different constitutive parameters, amplitudes, 

S, and crack radius were studied. All simulations 

yielded results for the variation of rates with time 

that were qualitatively similar to the above exam- 

ple. Figure 5 summarizes these results for R, as a 

function of amplitude S. 

Several features of these results are of interest: 

(1) stiffness (patch radius) and loading velocity 

have no effect on R,; (2) at the resolution of the 

computations, there is no discernable shift of R m3x 

and R,i, with respect to the maximum and 

minimum in the periodic loading component of 

the fault stress; (3) for a fixed set of constitutive 

parameters, the rate difference. R,, is propor- 

tional to the amplitude of the periodic loading 

amplitude, S; (4) the magnitude of R, is not 

affected by the constitutive parameter B, but 

varies inversely with the constitutive parameter 

A,. 
These results suggest the simple scaling law for 

R,: 

R, = 2S/A, (22) 

Al 51 Rat10 Rat10 

0 0.002 0.006 lo5 m io5, 5 

a 0.003 0.006 105 A 105, 5, 1 

0 0.004 0.006 lo5 0 105, 5 

V 0.008 0.009 105 ‘I 105, 5 

10 I / 1 

12.5hr Cycle 

! R, =2s/A, 

J 

Fig. 6. Change of instability rate (R max - R ,,,)/R, for 12.5-hr 

periodic load. Data are those of Fig. 5. In this case the data are 

plotted against S normalized by A,. Equation (22) is plotted as 

the solid line. Legend gives the constitutive parameters and 

patch radius. 
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Fig. 7. Rates of instability occurrence for a population of 

nucleation patches acted upon by a 1-yr periodic load with 

amplitude S = 0, 1 X 10e5, 5 X lo-‘, 1 x 10m4, 5 x 10e4, and 

1 x lo-’ for the curves labeled A, B, C, D, E. and F, respec- 

twely. RI/R is the rate of occurrence of instabilities div ,itJed 

by the average rate, R. over the I-yr period of the cyclic load. 

Figure 6 shows the data of Fig. 5 replotted for R, 

against S/A,. Equation (22) is plotted as the solid 

line. The deviation of the numerical results from 

eqn. (22) appears to be well within the apparent 

accuracy of the numerical computations. 

Similar computations were performed using a 

cyclic loading component with a I-yr period. The 
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purpose of these computations was to test for a 

possible dependence of the result of eqn. (22) on 

loading period by using a period very different 

from 12.5-hr. Additionally, an annual cycle could 

be of interest for earthquakes induced by reservoir 

loading because reservoirs commonly show a sig- 

nificant seasonal fluctuation of water level. 

Figure 7 shows results for instability rate as a 

function of S, the amplitude of the periodic load 

and time in the annual cycle. Figure 8 is a summary 

of all computations with a l-yr period and plots 

R,, the amplitude of the instability rate variation, 

against S/A,. The results for R, using an annual 

cycle are the same as those obtained for a 12.5-hr 

period; they are well represented by eqn. (22) for 

S/A, < 1.0. For S/A, > 1.0, R, begins to diverge 

from the empirical relation of eqn. (22). 

Discussion and summary 

The model presented here utilizes constitutive 

properties for earthquake faults inferred directly 

from laboratory experiments. Because of displace- 

ment scaling in the constitutive law by the param- 

eter DC, instabilities on embedded faults can 

nucleate only if slip occurs on a fault patch with a 
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Fig. 8. Change of instability rate, (R max - R ,,,)/R. for a 1-yr periodic load. Summary of all data plotted against S normalized by 

A,. Equation (22) is plotted as the solid line. Legend gives the constitutive parameters and patch radius. 
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minimum radius, r,, that is proportional to DC. 

The magnitude of DC appropriate to faults in 

nature appears to be an open question at this 

time. In experiments, DC correlates with fault 

roughness and varies from a few microns for 

smooth surfaces without gouge to about 50 pm for 

roughened surfaces separated by a layer of gouge 

(Dieterich, 1981). If the values of DC from labora- 

tory faults are representative of faults in nature, 

then the critical radius, r,, for initiating earth- 

quake instability as obtained from eqn. (8) may be 

quite small. Additionally, it is found that accel- 

erating premonitory displacements in the interval 

from 10 days to 10 min preceding instability on 

the nucleation patch are approximately 5D, (Diet- 

erich. 1986). Using the maximum laboratory val- 

ues of DC (0.05 mm) with this model indicates that 

at u = 100 MPa, then r, = 5 m and premonitory 

displacements would be approximately 0.25 mm 

(Dieterich, 1986). Using the maximum laboratory 

values of DC (0.05 mm) with this model indicates 

that at u = 100 MPa, then r, = 5 m and premoni- 

tory displacements would be approximately 0.25 

mm (Dieterich. 1986). These results suggest that 

accelerating premonitory creep in the nucleation 

zone could be difficult to detect as a precursor 

unless DC in nature is much larger than that 

measured for the laboratory simulated faults. 

Estimates of fracture energy for large earthquakes 

are often quite large and indicate DC may be on 

the order of several centimeters. However, recent 

close-in, high-resolution strain observations prior 

to some moderate earthquakes show no evidence 

of accelerating strains prior to those earthquakes 

(Johnston et al., 1987). Those observations put 

upper limits on DC in the range 0.9 mm to 200 mm 

(Dieterich, 1986). 

It is noteworthy that the results for the dura- 

tion of accelerating slip and the time of occur- 

rence of instability (i.e., eqns. 12 and 22) are 

independent of DC. Consequently, the current un- 

certainty for the appropriate values of DC for 

faults in nature does not affect the application of 

the constitutive law to models for earthquake rates 

and times of occurrence. Additionally, it may be 

of interest to note that the empirical equations 

(12) and (22) depend principally on the constitu- 

tive parameter A, which is the coefficient for the 

direct velocity effect. Although the full constitu- 

tive equation is quite complex with several param- 

eters, these results for timing of the earthquake 

instability are controlled by the viscous term A,. 

This parameter is easily observed in experiments 

and is apparently insensitive to experimental con- 

ditions. The net steady state velocity-dependence 

of fault strength which is determined by the dif- 

ference (A, - B,) in eqn. (6a) does not control the 

final results. 

It is reasoned that it is the processes within the 

nucleation patch that control the timing of the 

earthquake instability, but not necessarily the size 

of the earthquake. Subsequent to the nucleation of 

the instability the earthquake may propagate well 

beyond the nucleation patch. The distribution of 

initial conditions on a population of potential 

nucleation patches and the history of stresses 

acting on the volume will determine the seismicity 

of a region. 

Previously it has been shown there is a delay 

between the time when stress on a patch exceeds 

the minimum threshold for instability and the 

time of instability (Dieterich, 1986). During that 

interval the fault patch undergoes accelerating slip 

that culminates in the instability. The time delay is 

governed by the amount the applied stress exceeds 

the threshold stress and by the constitutive param- 

eter A,. This delayed instability provides a plausi- 

ble explanation of aftershocks and foreshocks. If 

it is assumed that the population of patches must 

have a distribution of conditions that yield con- 

stant seismicity rates prior to the stress step of the 

mainshock, then following the mainshock predict- 

ed seismicity rates will decay by l/t. 

In the discussion below, the model results are 

applied to the triggering of earthquakes by tidal 

stresses and seasonal fluctuations in reservoir 

loads. The following considers only the effects of 

periodic perturbation of shear stress and fault 

constitutive properties on seismicity rates. Full 

analysis of these problems would include many 

factors that cannot be addressed by the model in 

its current state. Those factors might include vari- 

ation of the entire stress field with time, not just 

the shear stress acting on the fault patches; time- 

and spatially-dependent variation of fluid pres- 

sures; and fault patches with various orientations 
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with respect to the stress field. 

Fault constitutive laws that do not have some 

type of velocity- or time-dependent fault strength 

have the characteristic that slip on a fault 

embedded in a simple elastic medium couples 

instantaneously to the applied driving stress. The 

commonly employed slip weakening models in 

which fault strength drops from a peak to residual 

value have this characteristic. In such cases, slip 

instability will occur at the instant some threshold 

stress is reached. If the applied stress is held just 

below that threshold, an instability will never ini- 

tiate. Where fault loading consists of a slowly 

increasing tectonic stress with a superimposed 

periodic component, it is the successively higher 

peaks of the periodic component that will advance 

the fault stress or displacement. Consequently, for 

simple models of faults with instantaneous insta- 

bility at a threshold, earthquakes will always be 

expected to occur near the times the periodic load 

reaches its maxima. Although some correlation 

between earthquake rates and earth tides has been 

reported in the literature (e.g., Klein, 1976), the 

enhancement of earthquake occurrence rates at 

any specific time in the tidal cycle is quite weak in 

the best examples and in most cases statistically 

meaningful correlations have not been found 

(Heaton, 1982). 

It might be argued that in the earth, multiple 

interacting faults may result in loss of coherence 

between tides and fault stresses with a resulting 

loss of correlation between tides and earthquake 

occurrence even if the fault follows a simple 

threshold criterium for instability. However, this 

argument is not supported by the evidence from 

strain records. Strainmeter records from seismic 

active regions show widespread coherence strain 

signals at tidal frequencies that are in agreement 

with theoretical tidal strains. Furthermore, the 

tidal strains are the dominant short-term strain 

signal. Yet earthquakes, even those from restricted 

regions with similar fault orientations, do not dis- 

play the expected correlation with tidal stresses. 

This suggests that the idea of earthquake instabil- 

ity occurring instantaneously at a minimum criti- 

cal threshold, although attractive in its simplicity, 

is probably an oversimplification when applied to 

questions of earthquake triggering. 

When state variable constitutive properties are 

utilized, under conditions where earthquake slip 

nucleates in the presence of a periodic loading 

component, it is found that instability rates are 

proportional to the magnitude of the amplitude of 

the periodic loading component and inversely pro- 

portional to the constitutive parameter A, (eqn. 

22). As A, is decreased, the enhancement of 

seismicity rates under conditions of periodic load- 

ing increases and appears to go to infinity as 

A, --j 0. It is seen that at A, = 0, the fault loses its 

viscous-like behavior, and from the results of eqn. 

(12), the fault no longer has time-delayed instabil- 

ity. The results of eqn. (22) for nucleation of 

unstable fault slip suggest some tentative conclu- 

sions for earthquakes occurring under conditions 

of periodic loading. 

By definition from eqns. (2) and (9) the param- 

eter S is the amplitude of the periodic variation of 

shear stress, I-~, divided by the normal stress. 

Using this definition, eqn. (22) is rewritten as: 

(23) 

If we make some assumptions for the parameters 

on the right side of eqn. (23), the normal stress 

range where this model predicts earthquakes to 

correlate with earth tides can be estimated. We 

assume, somewhat arbitrarily, that the practical 

threshold of detection for seismicity rate vari- 

ations in a catalog is R, > 0.1. In laboratory ex- 

periments, the parameter A, is consistently found 

to have values in the range 0.003%0.007. Taking 

A, = 0.005 and TV = 0.002 MPa bar for earth tides 

we obtain from eqn. (23) that u < 8 MPa for there 

to be observable correlation of earthquakes with 

tides. This would correspond to depths less than 

approximately 0.3 km for rocks with no pore fluid 

pressure, and depths less than about 0.5 km for 

rocks with pore fluid pressure under normal hy- 

drostatic head. This discussion suggests that the 

widespread failure to find strong correlation of 

seismicity with tides can be understood as a direct 

consequence of the constitutive properties of faults. 

The parameter A,, which controls the immediate 

velocity-dependent response of fault strength, acts 

to inhibit correlation of earthquakes with tides. If 

the value of A, for faults in nature is significantly 

less than that observed for laboratory faults, then 
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detectable correlation of earthquakes with tidal 

stresses would be generally expected. 

The inverse dependence of R, on normal stress 

given by eqn. (23) suggests that examination of 

earthquake catalogues for tidal correlations using 

only those earthquakes originating at very shallow 

depths should produce positive correlations if the 

normal stresses in the nucleation zones are suffi- 

ciently small. In addition, this model implies that 

correlation with tides could occur at higher nor- 

mal stresses where inhomogeneities amplify the 

magnitude of the tidal stress with the result that S 

is of greater magnitude. 

Amplification of tidal stresses could occur near 

soft inclusions that concentrate the deformation 

due to tides. Active volcanic regions where sub- 

surface magma reservoirs are undergoing distor- 

tion by earth tides are likely candidates for this 

type of tidal amplification. In this circumstance, 

the distortion of the reservoir due to the tides 

could induce stresses adjacent to the reservoir that 

are significantly greater than the tidal stresses in a 

homogeneous elastic medium. It is noted that 

Klein (1976) reports cases of tidal correlation of 

earthquakes for oceanic rift zones which he attri- 

butes to possible enhancement of tidal stress by 

weakened lithosphere. 

Another situation where tidal stresses could 

possibly be amplified sufficiently to cause detecta- 

ble seismicity rate changes at high normal stress is 

in zones adjacent to creeping faults. In this situa- 

tion stress redistribution arising from fault creep 

tends to be highly concentrated near the end of 

the slipping zone. Small changes in slip rate can 

result in large changes in rate of stress increase. If 

the slip rate on a creeping fault varies because of 

the tides, then earthquakes originating near the 

ends of creep sections could be correlated with 

tides. 

For the case of reservoir loading, seasonal 

fluctuations of water level obviously may induce 

complicated stress and pore fluid changes in the 

vicinity of the reservoir that would require careful 

case by case treatment to fully understand. How- 

ever, independent of such complications, strong 

correlation of reservoir loads and earthquakes are 

plausible because the amplitude of the stress vari- 

ation due to reservoir loading can easily be one or 

two orders of magnitude larger than the stresses 

due to earth tides. From eqn. (23) it is seen that 

this would be expected to result in a proportionate 

increase of the variation of earthquake rates for 

reservoirs compared to that for earth tides. For 

example, if the seasonal fluctuation of water level 

is 10 m, the reservoir load will vary by 0.1 MPa. If 

we assume the amplitude of the shear stress change 

is equal to load change ( rr, = 0.05) then from eqn. 

(23) we obtain R, = 0.8 and R, = 1.3 at a depth 

of 1.0 km for the case of fluid pressure equal to 

zero and normal hydrostatic pressure, respectively. 

At a depth of 4 km, R, = 0.2 and R, = 0.3 for 

fluid pressure equal to zero and normal hydro- 

static pressure, respectively. These rate changes 

are of sufficient magnitude to be detected. 

References 

Carder, D.S.. 1945. Seismic investigations of the Boulder Dam 

area, 1940-1944, and the influence of reservoir loading on 

local earthquake activity. Bull. Seismol. Sot. Am., 35: 

175-192. 

Chinnery. M.A., 1969. Theoretical fault models. In: K. 

Kasahara and A.E. Stevens (Editors). A Symposium on 

Processes in the Focal Region. Pub]. Dom. Obs., Ottawa. 

27(7): 21 I-223. 

Dieterich, J.H., 1978. Time-dependent friction and the 

mechamcs of stick-slip. Pure Appl. Geophys.. 116: 790-806. 

Dieterich. J.H.. 1979. Modeling of rock friction: I. Experimen- 

tal results and constitutive equations. J. Geophys. Rex, 84: 

2161-2168. 

Dieterich, J.H.. 1981. Constitutive properttes of faults with 

simulated gouge. In: Mechanical Behavior of Crustal Rocks. 

Geophys. Monogr., Am. Geophys. Union. 24: 103-120. 

Dieterich, J.H., 1986. A model for the nucleation of earthquake 

slip. In: Earthquake Source Mechanics. Maurice Ewing 

Sym. 6. Am. Geophys. Union, Monogr.. 37: 37-97. 

Dieterich, J.H. and Conrad. G., 1984. Effect of humidity on 

time- and velocity-dependent friction. J. Geophys. Res.. 89: 

4196-4202. 

Gu, J.-C.. Rice. J.R., Ruina. A.L. and Tse. S.T.. 19X4. Slip 

motion and stability of a single degree of freedom elastic 

system with rate and state dependent friction. J. Mech. 

Phys. Solids, 32(3): 1677196. 

Guha. SK., Gosavi, P.D.. Agarwal, B.N.P., Padale, J.G. and 

Marwadi. S.C.. 1973. Case histories of some artificial dis- 

turbances. Eng. Geol., 8: 59-77. 

Heaton. T.H.. 1982. Tidal triggering of earthquakes. Bull. 

Seismol. Sot. Am.. 72: 2181-2200. 

Johnston. M.J.S.. Linde. A.T., Gladwin. M.T. and Borcherdt. 

R.A.. 1987. Fault failure with moderate earthquakes. 

Tectonophysics. 144 (this issue): 189-206. 



139 

Jones, L.M., 1985. Foreshocks and time-dependent earthquake 

hazard assessment in southern California. Bull. Seismol. 

Sot. Am., 75: 166991680. 

Jones, L.M. and Molnar, P., 1976. Frequency of foreshocks, 

Nature. 262(5570): 677-679. 

Jones, L.M. and Molnar, P.. 1979. Some characteristics of 

foreshocks and their possible relation to earthquake predic- 

tion and premonitory slip. J. Geophys. Res., 84: 570995723. 

Klein, F.W.. 1976. Earthquake swarms and the semidiurnal 

solid earth tide. Geophys. J. R. Astron. Sot.. 45: 245-295. 

Koslov. D.D. and Lm, H.-P.. 1980. Reformulation and discus- 

sion of mechanical behavior of the velocity-dependent fric- 

tion law proposed by Dieterich. Geophys. Res. Lett., 7(11): 

9133916. 

Okubo, P.G. and Dieterich, J.H., 1986. State variable fault 

constitutive relations for dynamic slip. In: Earthquake 

Source Mechanics. Maurice Ewing Symp. 6. Am. Geophys. 

Union. Monogr.. 37: 25-35. 

Rice, J.R.. 1983. Constitutive relations for fault slip and earth- 

quake instabilities. Pure Appl. Geophys.. 121: 443-475. 

Rice, J.R. and Gu, J.-C., 1983. Earthquake aftereffects and 

triggered seismic phenomena. Pure Appl. Geophys.. 121(2): 

343-349. 

Rice, J.R. and Ruina, A.L., 1983. Stability of steady frictional 

slipping. Trans. ASME, J. Appl. Mech., 50: 343-349. 

Ruina, A.L., 1980. Friction laws and instabilities: a quasistatic 

analysis of some dry friction behaviour. Ph.D. Thesis, Brown 

University, Providence. R.I. 

Ruina, A.L.. 1983. Slip instability and state variable friction 

laws. J. Geophys. Res.. 88: 10359910370. 

Ruina, A.L.. 1985. Constitutive laws for frictional slip. In: Z. 

Bazant (Editor), Mechanics of Geomaterials. Wiley, New 

York. pp. 169-187. 

Simpson. D.W. and Negmatulleaev. SK., 1981. Induced 

seismicity at Nurek reservoir, Tadjikistan. USSR. Bull. 

Seismol. Sot. Am.. 71(5): 1561-1586. 

Weeks, J.D. and Tullis, T.E.. 1985. Frictional sliding of 

dolomite: a variation in constitutive behavior. J. Geophys. 

Res., 90(b9): 7821-7826. 


