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A note on contact stress and closure in models of rock joints 
and faults 
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Abstract. We have re-examined asperity deformation 
predicted by joint closure models based on Greenwood and 
Williamson [1966] which use a statistical representation of 
loaded, rough surfaces. Although such models assume small 
elastic strains within contacting asperities (Hertzian contact) 
and well predict the observed dependence of closure on 
normal stress, large elastic normal strains measured in 
experiments violate the model assumptions. This 
inconsistency between observations and models can be 
resolved. The model dependence of closure on macroscopic 
normal stress results primarily from the statistics of the 
surface topography, and the functional dependence of closure 
on normal stress can be independent of assumed contact-scale 
elastic interactions. Thus, a joint model of the Greenwood and 
Williamson kind, modified to allow a portion of the elastic 
deformation to occur outside of the asperity contact region, 
predicts macroscopic behavior consistent with Hertzian 
models. Contact stresses derived from previously published 
models of this kind may be in error. 

1. Introduction 

Planar discontinuities such as faults and joints are important in 
determining the physical properties of the Earth's crust, 
especially where the confining stress is low. For example, rock 
elastic and poroelastic properties are affected by the presence of 
mismatched joints because of their high normal compliance 
[Walsh and Grosenbaugh, 1979; Swan, 1983; Brown and Scholz, 
1985]. Electrical resistivity of dry rock depends on the percent of 
contact across joints and fractures [Greenwood and Williamson, 
1966]. Fluid transport properties such as permeability and 
hydraulic diffusivity also depend on joint or fracture aperture, 
which can vary strongly with normal stress at shallow crustal 
conditions [Gangi, 1978]. As is the case for joints, the 
mechanical properties of faults, such as strength and sliding 
stability, are controlled by contact-scale interactions and 
deformation [e.g., Dieterich, 1978]. Because stress in the crust is 
generally limited by fault strength [see Hickman, 1991], and 
because some faults pose significant seismic hazard, models of 
fault strength and fault stability based on contact-scale 
interactions are of great interest in crustal and earthquake 
mechanics. 

Existing models of the normal compliance of mismatched 
joints [Walsh and Grosenbaugh, 1979; Swan, 1983; Brown 
and $cholz, 1985], extensions of these for shear compliance 
[Yoshioika and Scholz, 1989], and some models of sliding 
friction [Biegel et al., 1992; Boitnott et al., 1992; Wang and 
Scholz, 1994] are derived from a statistical description of 
loaded rough surfaces proposed by Greenwood and 
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Williamson [1966]. The Greenwood and Williamson model 
considers contact between a perfectly flat surface and another 
surface that is nominally flat but covered with fine-scale 
topography. When two surfaces are brought together to a 
separation of d (Figure l a), the probability that any asperity 
on the nominally flat surface will make contact with the flat 
surface is 

prob = I qo(z)dz, (1) 
d 

where qo(z)dz is the probability that a particular asperity has 
height z in the range z+dz. Assuming that all asperity contacts 
deform elastically and that the force F exerted by a single 
asperity is a function of the local deformation (F=J(z-d)), the 
total macroscopic resisting normal stress or, is 

O' n = rl l F(z- d)•o(z)dz, (2) 
d 

where r/is the areal density of asperities (in units area 'l) on 
the surface. Greenwood and Williamson [1966] further 
assumed that the tips of all asperities are spherical and have 
constant radius of tip curvature fi, thus requiring all contacts 
between the two surfaces to be circular. The relationship 
between the resisting force and the deformation of individual 
asperities is assumed to be given by Hertz's solution 

(3) 
where E'is an elastic constant, the sum of (1-v2)/E for the two 
surfaces (v is Poisson's ratio and E is Young's modulus) [see 
dohnson, 1985]. Use of (3) for F in (2) requires that the radius 
of each area of contact between the two surfaces is small 

compared with the height of the corresponding contacting 
asperity, and that the radius of each asperity contact is small 
with respect to the radius of curvature of the corresponding 
asperity tip [see dohnson, 1985]. Substituting (3) into (2) 
yields 

= 4 -- •p(z)dz. (4) O' n ¾rlE'x[-•(z d) 3/2 
d 

Equation (4) is the foundation for subsequent work on the 
physical properties of joints and on the frictional strength of 
fault surfaces. Notably, Brown and $cholz [1985] have 
adapted (4) for the case of 2 nominally flat but rough surfaces 
in contact (Figure lb). In this case, a composite surface 
profile, given by the sum of the two rough surface profiles, 
specifies the composite probability qo(z). Although models of 
contact between two rough surfaces can be more complicated 
than (4), previous work has shown that in many cases (4) 
requires little modification. For example, although 
deformation resulting from non-normal incidence of asperities 
can lead to hysteresis in fracture closure [$cholz and 
Hickman, 1983], rigorous consideration of oblique contact 
suggests that local surface slope is small and tangential stress 
due to non-normal incidence can be ignored in deriving 
expressions for overall fracture compliance [Brown and 
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Figure 1. Representation of surface contact. a) Rough surface in 
contact with a flat [after Greenwood and Williamson, 1966]. The 
height of the rough surface z is measured with respect to a 
reference plane. The position of the flat d is also measured with 
respect to the reference. The macroscopic closure ••d•-• where 
do is the height of the tallest asperity above the reference. The 
deformation of an asperity in contact is z-d. b) Two rough 
surfaces in contact [after Brown and Scholz, 1985]. The actual 
topography is defined by upper surface heights z2 measured with 
respect to the upper reference surface and lower surface heights 
z/measured with respect to the lower reference surface. In the 
model of Brown and Scholz [1985], the actual topography is 
replaced by a composite topography z=z/+z2, equivalent to the 
case shown in Figure la, and do, d and & are as defined in a). c) 
Representative closure of unmatched joint surfaces (dots) [Brown 
and Scholz, 1985], where right- and left-facing arrows indicate 
loading and unloading curves, respectively. The solid line is a fit 
with the Greenwood and Williamson theory (4), assuming an 
exponential distribution of asperity heights (p(z). 

$cholz, 1985], at least for artificial joints (flat surfaces 
roughened by grinding). Similarly, contributions from 
variable asperity curvature are expected to be small. Study of 
the statistics of random surfaces suggests that under many 
circumstances/• is approximately constant [Nyak, 1971]; in 
particular, for laboratory joints in rock there is no correlation 
between asperity tip curvature and height [Brown and Scholz, 
1985]. Thus, equation (4) with the composite probability (p(z) 

and •/• replaced with its average value < •ffi > is adequate to 
describe the normal closure of many rock joints [Brown and 
$cholz, 1985]. Predictions of the Brown and Scholz model for 
the case where the distribution of asperity heights of the 
composite topography is exponential (i.e., qg(z)=C/exp(-z/C2)) 
are roughly consistent with the observed dependence of 
closure on macroscopic normal stress [e.g. Goodman, 1976] 
(Figure l c). More generally, when models of the Greenwood 

and Williamson kind are used to represent fractures or joint 
surfaces [Walsh and Grosenbaugh, 1979; Swan, 1983], the 
predicted dependence of elastic closure on normal stress 
matches experimental measurements well. 

In this paper we show that when applied to actual 
laboratory data, a Greenwood and Williamson model which 
assumes Hertzian contact requires deformation on the contact 
scale that is too large. In particular, a portion of the 
deformation involved in joint closure must be accommodated 
outside of the region of asperity contact. Thus, despite the 
observation that such models well describe the laboratory 
measurements of joint closure under stress, there is a 
fundamental inconsistency between theoretical models and 
observations. We resolve this inconsistency. 

2. Implied contact strain from topography and 
closure measurement 

If the distribution of asperity heights (p(z) in (4) is 
determined by surface profiling prior to experimental 
measurement of closure, then tests of the Greenwood and 
Williamson theory are possible [e.g., Swan, 1983; Brown and 
Scholz, 1985; Yoshioka and Scholz, 1989]. We are specifically 
interested in predicting average microscopic contact stress 
< (•c > as a function of macroscopic normal stress (•, based on 
the mean value of asperity deformation <60>, e.g. the 

Hertzian contact stress (or c ) = 0.42E, 4(6a )/(,/3) [see dohnson, 
1985]. However, while calculating values of contact stress 
based on published values of joint closure, we find large 
macroscopic closure that violates the assumptions of Hertzian 
contact. For example, Figure 2a shows a representative 
theoretical probability density function (pC) for asperities 
calculated according to the theory of Nyak [1971] using the 
parameters listed in Table 1 from surface profile 
measurements for a joint surface of fused silica [Brown and 
$cholz, 1985]. The range of asperity heights which experience 
some deformation z-d in a joint closure test on this sample 
(Figure 2a) range from height do to do'6max, where do is the 
surface separation at •,=0 and 6ma,• is the closure observed at 
the maximum applied normal stress of 7 MPa. Denoting the 
deformation experienced by a contacting asperity as 6,=(z-d), 
we find the mean value of asperity deformation as a function 
of closure is 

do 

(rS a ) = I(Z - d)(p(z)dz (5) 
d 

(Figure 2b). Contacting asperities experience a typical 
deformation <6o> of 1.3 !•m at 7 MPa maximum normal stress, 
corresponding to 6m•x = 7.73 !•m (Figure 2b and Table 2). 
Therefore, to satisfy the assumptions of Greenwood and 
Williamson theory, displacements of this magnitude must be 
accommodated elastically within the region of contact for the 
majority of contacts, and the tallest asperities must accommodate 
deformation approaching 6m•x. 

To determine if < 6•> could be reasonably accommodated 
elastically we compare <6•> to the asperity tip radius of 
curvature because the ratio <6•> /jS,,,,g is approximately the 
asperity strain. Figure 2c shows that/• derived from surface 
profile measurements,-for the same sample shown in Figures 
2a and 2b, is approximately independent of asperity height. 
Thus, using the average tip radius of curvature j•avg = 9.1 gm 
we infer that asperity strains during this experiment on fused 
silica at 7 MPa macroscopic normal stress range are typically 
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with this model because the deformation is too large to be 
accommodated elastically in quartzofeldspathic minerals or 
glasses. Similarly, contact spot radii calculated from Hertz's 

solution (a)= •(tSa)[Javg [Johnson, 1985] are smaller but of 
the same order as fi (Table 2) for the Brown and Scholz [1985; 
1986] data, violating the conditions required for using 
equation (3). 

Previous studies of quartzofeldspathic materials using such 
models have considered whether contact stresses reach the 

level of plastic yield [Yoshioko, 1994; Brown and $cholz, 
1986]. To determine the threshold for plastic yield we 
evaluate the classical criterion of Greenwood and Williamson 

[ 1966] based on Tabor [1951], and an alternative criterion 
suggested by Brown and Scholz [1986]; tSy = fi(H/E') 2 and tSyy 
= 2•3(H/E') 2 are the classical and the modified criteria, 
respectively. H is the indentation hardness. Calculated values 
of these displacements for the Brown and Scholz [1985; 1986] 
fused silica and quartzite experiments (Table 2) indicate that 
the typical asperity should experience plastic strain because 
the critical displacement for yield is smaller than the typical 
asperity deformation <&>. In contrast, actual experimental 
measurements indicate that typical joint closures (ranging 
from 5 to 11 gm) are fully recoverable, therefore the 
deformation is almost totally elastic [Swan, 1983; Brown and 
Scholz, 1985; 1986]. Our conclusion is that the Greenwood 
and Williamson model with Hertzian contact is not consistent 

with observed elastic joint closure- it predicts contract strains 
well in excess of those required for yielding. 

3. A non-Hertzian model 

If Hertz's equation cannot be used with (2) to model 

• 10.5 ...... asperity strain at low normal stress, why then does the 

• i '• pressure dependence of joint closure (Figure l c), and why are 
610.0 

• :-!m:)/• i i'-its extensions able ,o describe aspects of sliding friction • o a [Biegel et al., 1992; Boitnott et al., 1992; Wang and Scholz, 
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Figure 2. Properties of rough surfaces in contact. a) 
Probability density of asperity heights, calculated from 
profiles made by Brown and $cholz [1985]. Characteristics of 
the profile are listed in Table 1. Inset shows the range of 
asperity heights that are in contact at -•7 MPa normal stress, 
based on predictions of Brown and Scholz [1985]. b) The 
mean value of asperity deformation <6,,> as a function of 
macroscopically measured closure t5 calculated from equation 
(5) using data in Table 1. c) Distribution of asperity tip radius 
of curvature fi calculated according to theory of Nyak [1971] 
from the profile data of Brown and Scholz [1985]. 

0.14 (<6•>=l.3gm) and can be as high as 0.85 (6m•=7.73gm). 
Results for Cheshire quartzite (Table 2, Brown and Scholz, 
1986) indicate typical contact strains on the order of 0.31, 
with peak strains approaching 1.17. The strain implied by the 
measured elastic deformations represents a serious problem 

shown in Figure 2a and elsewhere [Walsh and Grosenbaugh, 
1979; Swan, 1983; Power and Tullis, 1992], the exponential 
distribution of contacting asperity heights is an adequate 
approximation for many natural and laboratory rock surfaces. 
In this case, equation (4) has the analytical solution 

O n = C 1 C 25/2tIE' •exp -d/c2 (7) 

Table 1. Surface characteristics and closure model parameters 
[Brown and Scholz, 1985; 1986]. 
Exp. {y m2 in4 do mo a 

Qtm) (•tm '2) (gm) (pm 2) 
CGL0394 11.2 0.112 4.53x10 '3 30.02 125.44 45.3 
CCQ0073 12.9 0.111 5.11x104 33.3 166.41 69.0 
{y-standard deviation of asperity heights, calculated from surface 

profile measurements using theory of [Nyak, 1971], 
too, m2, m4 - the first 3 even moments of the power spectrum of a 

surface profile [Nyak, 1971; Brown and Scholz, 1985] 
a- mom4/(m2) • parameter describing the flatness of a power spectrum 
do- distance between reference planes at ix,=0 



Table 2. Measured maximum closure and calculated properties that strains are accommodated within the entire height of 
of typical asperity contacts [Brown and $cholz, 1985; 1986]. 
Exp. 6,,,• <6• fi•vg <a> 8y (gm) • 

(gm) (gm) (gm) (gm) , (gm) 
CGL0394 7.73 1.3 9.1 3.4 0.52* 1.03' 

CCQ0073 10.43 2.8 8.9 5.0 0.57** 1.13'* 
* Fused silica E'=29.57 GPa [Brown and Scholz, 1985], H = 7 GPa 

[McLellan and Shand, 1984] 
** quartzite E'-- 39.7 GPa [Brown and Scholz, 1986], hardness 

assumed equal to that of quartz H = 10 GPa [Evans, 1984] 

Noting that d=do-3 and defining a new constant 

C 3 = C 1C 25/2tIE' • , (7) can be rearranged to give 
6 = d o + C 2 ln(crn/C 3), (8) 

which is the same form as the empirical relationship 
commonly used to relate normal stress to joint closure 
[Goodman, 1976]. However, the functional dependence of 
closure on macroscopic normal stress in (8) does not require 
Hertzian contact. If, as assumed above, tp(z)•C•exp(-z/C2), 
and if the resisting force of an individual asperity has the 
general form F=C4(z-d)•, where p is an positive exponent and 
C4 is a constant (c. f., equation 3), then the solution to (2) is 

a n = r•C 1C 4 C 2(p+I)F(P + 1)exp -d/C2 , (9) 
which differs from (7) by a constant. Here, F is the gamma 
function, for example having particular values F(n)=(n-1)! 
and r(n +1/2)= •-•/2 • .(2n-1)!!, where n is a positive 
integer, ! is the factoffal series, and !! is the double factorial 
series. 

Having demonstrated that the experimental measurements 
of joint normal strain are elastic but too large to be accounted 
for by Hertzian contact, we conclude that some of the elastic 
strain is accommodated outside the region of contact. An 
alternative to (3) for the resisting force of an asperity is 
obtained by assuming that each asperity behaves as a linear 
elastic spring wherein the deformation is distributed over the 
entire height of the asperity instead of only in the contact 
region. Although the stiffness of each asperity might be 
expected to be inversely proportional to its height, the 
variation in height of asperities in contact during a joint 
closure test is typically very small (e.g. Figure 2a). As an 
approximation we therefore assume that the stiffness of all 
asperities in contact is independent of asperity height, i.e. 
F=C4(J-d) 1 and (9) can be used. Thus, for our alternative 
model we obtain a solution for rr,, that has exactly the same 
functional dependence on d and r/as the Hertzian model. We 
therefore argue that the macroscopic pressure dependence of 
closure predicted by models of the Greenwood and 
Williamson [1966] kind depends primarily on how many 
asperities are in contact and secondarily on the geometry and 
scale of the contact or asperity-scale elastic interactions, at 
least for artificial joints. In particular, if tp(z) is an exponential 
and F(z-d) is a power law, the form of the solution to (2) is 
entirely independent of assumptions about microscopic elastic 
interactions. 

4. Conclusions 

Elastic models of rock joints that use a statistical 
representation of surface roughness and assume Hertzian 
contact [Greenwood and Williamson, 1996] are invalidated by 
experimentally measured joint closure- the observed elastic 
displacements are too large. For artificial joints, the 
macroscopic pressure dependence of closure predicted by 
models of the Greenwood and Williamson kind depends 
primarily on how many asperities are in contact. By assuming 

contacting asperities, instead of in the immediate vicinity of 
contact, we obtain a model that can predict the same 
functional relationship between closure and pressure as 
predicted by HertzJan models. Our analysis suggests that 
microscopic contact stresses derived from previous models of 
rough surfaces in contact may be in error. 
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