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A Simple Stick-Slip and Creep-Slip Model for Repeating Earthquakes

and its Implication for Microearthquakes at Parkfield

by N. M. Beeler, D. L. Lockner, and S. H. Hickman

Abstract If repeating earthquakes are represented by circular ruptures, have con-
stant stress drops, and experience no aseismic slip, then their recurrence times should
vary with seismic moment as t Mr ∝ 0

1 3/ . In contrast, the observed variation for small,
characteristic repeating earthquakes along a creeping segment of the San Andreas
fault at Parkfield (Nadeau and Johnson, 1998) is much weaker. Also, the Parkfield
repeating earthquakes have much longer recurrence intervals than expected if the
static stress drop is 10 MPa and if the loading velocity VL is assumed equal to the
geodetically inferred slip rate of the fault Vf. To resolve these discrepancies, previous
studies have assumed no aseismic slip during the interseismic period, implying either
high stress drop or VL � Vf. In this study, we show that a model that includes aseismic
slip provides a plausible alternative explanation for the Parkfield repeating earth-
quakes. Our model of a repeating earthquake is a fixed-area fault patch that is allowed
to continuously creep and strain harden until reaching a failure threshold stress. The
strain hardening is represented by a linear coefficient C, which when much greater
than the elastic loading stiffness k leads to relatively small interseismic slip (stick-
slip). When C and k are of similar size creep-slip occurs, in which relatively large
aseismic slip accrues prior to failure. Because fault-patch stiffness varies with patch
radius, if C is independent of radius, then the model predicts that the relative amount
of seismic to total slip increases with increasing radius or M0, consistent with vari-
ations in slip required to explain the Parkfield data. The model predicts a weak
variation in tr with M0 similar to the Parkfield data.

Introduction

High-resolution seismological studies of faults in cen-
tral California within the San Andreas fault (SAF) system
reveal small repeating earthquakes with short recurrence in-
tervals (typically tr � 5 yr). These earthquakes occur on
different faults in a number of locations, including an M
�1.5 earthquake sequence on the Calaveras fault in the af-
tershock zone of the 1984 Morgan Hill earthquake (Vidale
et al., 1994; Marone et al., 1995), six M �1.5 earthquake
sequences in the aftershocks of the 1989 Loma Prieta earth-
quake (Schaff et al., 1998), 53 M �1.5 earthquake sequences
in the Parkfield segment (Nadeau and Johnson, 1998), and
37 sequences on the Hayward fault from north of El Cerrito
south to San Leandro (Burgmann et al., 2000). Study of
small earthquakes with short recurrence may provide insight
into the behavior of larger repeating earthquakes, which are
of greater interest because of their greater damage potential,
but are more difficult to study because they have longer re-
peat times. However, for these particular small events, scal-
ing of source parameters to the size appropriate for hazard-
ous earthquakes is controversial; for example the variation
of recurrence interval with seismic moment M0 for the Park-

field repeating earthquakes of Nadeau and Johnson (1998)
is weaker than expected based on standard assumptions (Fig.
1). To illustrate, we calculate the expected relationship be-
tween recurrence and seismic moments for a circular rupture
assuming no aseismic creep and constant stress drop, as
might be expected for large earthquakes. Here we have used
the static stress drop for a circular patch of radius r,

∆ ∆τ πµ δ
s

seis= 7

16r
(1a)

(Eshelby, 1957; Keilis-Botok, 1959), and the standard defi-
nition of seismic moment

M r0
2= µπ δ∆ seis ,

(1b)

where l is the shear modulus. Assuming that the total
slip over the seismic cycle is the seismic slip
∆ ∆δ δtotal seis r L= = t V , we find
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Figure 1. Repeating earthquake recurrence. Solid
symbols are for Parkfield sequences from Nadeau and
Johnson (1998). Recurrence interval was determined
from published values of average moment and mo-
ment rate tr � M0 /Ṁ0. The dotted line is a linear
least-squares fit with slope 0.086. Open symbols are
for the CA1 sequence of Vidale et al. (1994). Recur-
rence and seismic moment for CA1 were determined
as described in the text. The dashed reference line is
the expected scaling of tr with M0 from a circular rup-
ture assuming constant stress drop and no aseismic
slip (see text).

Figure 2. Repeating earthquake stress drop. Solid
symbols are for the Parkfield sequences of Nadeau
and Johnson (1998), using their procedure for calcu-
lating stress drop; they assume no aseismic slip and
a loading rate equal to the average creep rate of the
San Andreas fault at Parkfield. The open symbols are
for the CA1 sequence of Vidale et al. (1994). Two
estimates for CA1 are shown. High stress drops are
estimated for CA1 if the procedure of Nadeau and
Johnson (1998) is followed (open circles). Lower and
more typical (�16 MPa) stress drops are found for
CA1 if rupture duration of Vidale et al. (1994) is used
(open squares) (see text). The diagonal line is the scal-
ing relation for stress drop with seismic moment pro-
posed by Nadeau and Johnson (1998).t
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where VL is loading velocity. Thus, if stress drop is constant,
t Mr ∝ 0

1 3/ , a variation with moment significantly stronger
than observed for the Parkfield repeating earthquakes (Fig.
1); a least-squares fit to the data gives t Mr ∝ 0

1 11~ / (dotted
line, Fig. 1). In addition, using equation (2), a constant stress
drop of 10 MPa, and loading velocity VL � Vf � 2.3 cm/
yr, the average creep rate of the SAF at Parkfield (Nadeau
and Johnson, 1998), we find that the observed recurrence
intervals are longer than expected by almost two orders of
magnitude for the smallest events and by a factor of 10 for
the largest events.

To explain the discrepancies between the expected and
observed recurrence intervals (Fig. 1) Nadeau and Johnson
(1998) assumed no aseismic slip during the interseismic pe-
riod and constant VL. Using these assumptions with equation
(1a) and (1b) leads to

∆τ µ
s

r L= 2 44
3 2

0

.
( )

.
/t V

M
(3)

Thus, because recurrence for the Parkfield repeating se-
quences is approximately independent of seismic moment
(Fig. 1), based on these assumptions, the stress drop inferred
by Nadeau and Johnson (1998) decreases with moment (Fig.
2). This scaling with moment is qualitatively consistent with
laboratory scaling of rock strength with sample size. How-
ever, using equation (3) and VL � Vf, Parkfield repeating

events have inferred Dss � 250–5000 MPa, which is very
much larger than typical for earthquakes, for example, Dss

� 2.0 � 10�2 to 60 MPa for events with �1 � ML � 5
(Abercombie, 1995a,b), and the implied fault strength, even
assuming complete stress drop, is higher than typical labo-
ratory rock strength (see summary in Lockner, 1995).

Do small repeating earthquakes on strike-slip faults in
central California have high stress drop? While the stress
drops of repeating events at Parkfield are unconstrained,
stress drop of other similar repeating earthquake sequences,
such as CA1 (Vidale et al., 1995), are better defined. The
CA1 repeating earthquake (M �1.5) is located along the
Calaveras fault south of the epicenter of the 1984 Morgan
Hill earthquake (Vidale et al., 1994; Marone et al., 1995).
Rapid creep (afterslip) was induced in this fault segment by
stress transfer from the Morgan Hill mainshock (Ellsworth,
1995). To compare CA1 with the Parkfield sequences, we
first estimate the CA1 loading rate from fault creep (12–0.8
mm/day for the period May–August 1984) (Prescott et al.,
1986) inferred from length changes of the Hamilton to Lla-
gas geodetic line, which crosses the fault obliquely. To com-
pare recurrence between regions with different loading rates
we use the expectation that recurrence and loading velocity
are inversely related to first order (e.g., Beeler et al., 2001)
and normalize recurrence by the ratio of the loading rate to
the Parkfield loading rate (also see Nadeau and McEvilly,
2000). The CA1 relative moments Mr of Vidale et al. (1994)
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Figure 3. Apparent creep-slip in a laboratory ex-
periment (Summers and Byerlee, 1977). The experi-
ment was conducted on a 0.025-in. thick wafer of dry
serpentinite sheared between granite blocks at a strain
rate of 10�4 per sec at 150 MPa confining pressure.
The differential stress is the difference between the
confining pressure and the greatest principal stress.
The horizontal axis is the displacement of the loading
piston that increases the greatest principal stress and
the shear stress on the fault at a rate ds/ddL � k, so
long as the fault is not sliding. The periods in which
the stress increases rapidly with piston displacement
correspond to elastic loading with slope proportional
to the machine stiffness k. The periods in which the
stress increases weakly with piston displacement are
periods of ongoing fault creep. The periodic stress
drops are the laboratory equivalent of repeating earth-
quake stress drop.

were converted to seismic moment assuming a mean event
magnitude of M 1.5 (M � 1.5Mr) and the relationship
M M

0
1 5 16 110= +. . (Hanks and Kanamori, 1979) where M0 is

in units of dyne cm. We restrict our attention to events sub-
sequent to the Morgan Hill earthquake on 24 April 1984 and
prior to the occurrence of a nearby M 1.4 earthquake on 19
February 1985, which induced a significant static stress
change on the CA1 source region (Ellsworth, 1995). After
accounting for the large differences in loading rate, the CA1
sequence can be seen to have the same kind of anomalous,
long recurrence intervals as the Parkfield repeating events;
the CA1 sequence recurrence, when plotted versus seismic
moment, are on trend with recurrence of the Parkfield re-
peating earthquakes (Fig. 1). A result of the consistency of
recurrence between the Parkfield events and the CA1 se-
quence is that when the CA1 stress drops are estimated using
equation (3), stress drop is also on trend with the Parkfield
data (Fig. 2).

However, stress drop for CA1 is constrained by the
event duration td, equivalent to the reciprocal of the corner
frequency, which was estimated for the CA1 sequence using
spectral techniques by Vidale et al. (1994). We convert the
event duration (Vidale et al., 1994) to rupture radius assum-
ing a Brune source model with rupture velocity Vr � 0.9b
(b is the shear-wave speed) yielding the duration td � 2.4r/
Vr. The stress drop is calculated from seismic moment using
equation (1a) and (1b), which yields ∆τ s d r= 6 04 0

3. /( ) .M t V
Using these assumptions and Vr � 2.5 km/sec, we find Dss

� 16 MPa for CA1 (Fig. 2), inconsistent with the inferred
stress drop for Parkfield events. While our finding of lower
stress drop for CA1 does not pertain directly to stress drops
for the Parkfield repeating earthquakes, because the Park-
field sequences are but one set of many sequences that show
anomalous long recurrence (Nadeau and McEvilly, 2000),
our finding for CA1 indicates that small repeating earth-
quakes generally do not have high stress drop. Furthermore,
preliminary event duration-based estimates for selected
same-locale Mw 1.1–5.0 earthquakes at Parkfield find stress
drops of 1.0–50 MPa (Johnson and Dreger, 2000), consistent
with CA1.

One alternative to the high-stress-drop model for re-
peating earthquakes is to reduce the loading rate by shielding
the repeating events with adjacent locked regions (Anoosh-
ehpoor and Brune, 2001; Sammis and Rice, 2001); a second
alternative, which we develop in this article, is to allow sig-
nificant aseismic slip during the interseismic period (oral
presentation, Ellsworth et al., 1998). Fault patches that sus-
tain significant aseismic creep prior to failure are observed
during laboratory failure cycles, for example in clay-rich
fault gouges (Morrow et al., 1982) and serpentinites (Sum-
mers and Byerlee, 1977). Figure 3 shows repeating stress
drop following large amounts of aseismic creep (the ratio of
seismic to total slip R � 0.25) for serpentinite at room tem-
perature and 150 MPa confining pressure (Summers and
Byerlee, 1977). Although there is presently no theory to ac-
count for this creep-slip behavior in room temperature lab-

oratory experiments, it is expected at natural conditions, al-
beit under restrictive circumstances. For example, Sleep and
Blanpied (1992) suggest that porous, ductile faults will shear
and compact simultaneously under increasing tectonic load.
Compaction will increase the density and hence the resis-
tance to further shearing, equivalent to the shear stress on
the fault plane s; if the fault zone is undrained, compaction
will also increase the pore fluid pressure p. Under such con-
ditions the shear stress will increase, and the effective stress
can decrease with time during loading until a brittle, fric-
tional failure strength is reached and seismic stress drop oc-
curs. Although ductile fault zones in the Sleep and Blanpied
model are intended to deform via high-temperature solution-
aided creep (pressure solution), this model can be adapted
to more general situations (cf. Fig. 3). We define a material
as ductile if it is capable of sustaining permanent deforma-
tion without loss of strength (regardless of the deformation
mechanism) and note that the requirements for creep-slip are
simply an initially ductile fault zone that strain hardens. Dur-
ing continuous tectonic loading, such a material will even-
tually reach a ductile limit at high stress and become brittle
(where strength loss accompanies continued permanent de-
formation). This conceptual model may be appropriate for
small repeating earthquakes (Vidale et al., 1994; Marone et
al., 1995; Nadeau and Johnson, 1998; Schaff et al., 1998;
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Figure 4. Geometry of a simple creep-slip model
consisting of a circular seismic patch of radius r em-
bedded in an elsewhere aseismic creeping fault plane.
Slip and slip velocity of the creeping fault surround-
ing the patch are dL and VL, respectively. The slip and
slip velocity of the patch during loading are d and V,
respectively.

Burgmann et al., 2000), which occur exclusively in creeping
(ductile) sections of faults-regions where most of the total
moment is released in aseismic fault slip (e.g., Wesson et
al., 1973).

In this article we develop a simple model, based crudely
on the experiments and theoretical results cited previously.
The model is intended to be simple so that analytical ex-
pressions for source properties can be derived and applied
to observational data. The model, which predicts relation-
ships between seismic slip, aseismic slip, stress drop, earth-
quake recurrence, and seismic moment, is tested against the
Parkfield repeating microearthquake catalog.

Model

For small repeating-earthquake sequences, failure is
thought to occur on a single asperity or fault patch embedded
in an aseismically creeping fault plane (Vidale et al., 1994;
Ellsworth, 1995; Marone et al., 1995; Nadeau and Johnson,
1998; Nadeau and McEvilly, 1999) (Fig. 4). In this case,
recurrence is apparently controlled by the rate of aseismic
creep of the fault surrounding the patch, as geodetically mea-
sured fault creep correlates with cumulative earthquake mo-
ment release rate and with recurrence interval (e.g., Ells-
worth, 1995; Beeler et al., 2001). To represent this behavior
we consider a fault plane containing a circular patch with
radius r. The fault patch represents a region with material
properties that are somewhat different than the fault sur-
rounding the patch (surroundings). The fault surrounding the
patch has homogeneous material properties that allow ase-
ismic slip at a constant shear resistance. Stress on the patch
is assumed uniform or can be well characterized by a spatial
average. Loading of the patch occurs by elastic stress trans-
fer from the creeping part of the fault plane to the patch, and
can be represented by

τ δ δ δ δ= − = + −k k V t( ) ( ),L aseis L0 L aseis
(4)

where the stiffness k r∝ 1/ , δaseis is the interseismic displace-
ment of the patch, and dL, dL0, and VL are the displacement,
the initial displacement, and the slip velocity of the sur-
roundings, respectively. If the long-term slip rate of the fault
patch and the long-term slip rate of the surroundings are
equivalent (i.e., ∆ ∆ ∆ ∆δ δ δ δL total seis aseis= = + ), and the
patch radius is constant, then k = ∆ ∆τ δs seis/ (see Appendix).
Here, Ddseis is the spatial average of seismic slip over the
patch during a single earthquake.

We desire a fault-strength relation for the patch that al-
lows for interseismic slip. This requirement is met if patch
strength prior to failure is an increasing function of fault slip,
that is, a slip- or strain-hardening behavior (e.g., Morrow et
al., 1982)

s � s � Cd , (5)strength o aseis

where the slip-hardening coefficient C = d dstrength aseisτ δ/ is a
positive constant and so (residual stress) is the strength at

the onset of the loading cycle. The patch slips continuously
during loading, possibly at an extremely low rate, thus fixing
the shear stress s � sstrength. Noting that s � kdL0 from
equations (4) with (5) we have

δaseis
L=

+
kV t

C k( )
, (6a)

and

τ τ= +
+







o C

kV t

C k
L

( )
. (6b)

If the loading rate is constant, we can determine the sliding
rate during loading by equating the time derivatives of equa-
tions (4) and (5) to obtain:

V
kV

C k
=

+
L . (6c)

We then assume that seismic failure occurs when s reaches
a threshold strength sf, and stress immediately drops to so ,
thereby defining the static stress drop ∆τ τ τs f= − o . We as-
sume that the patch constitutive behavior follows equation
(6) over multiple loading cycles; thus we implicitly assume
that earthquake stress drop resets the patch strength and does
not alter the constitutive behavior in subsequent loading cy-
cles. From equation (6b) the earthquake recurrence interval
is given by
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Figure 5. Comparison of the ratio of seismic to
total slip R from the creep-slip model and as estimated
for the Parkfield data. (a) R, equation (11) with C �
3.0 MPa/cm, Dss � 10 MPa, l � 3 � 1011 dyne/
cm2, and VL � 2.3 cm/yr. (b) Parkfield data assuming
constant stress drop, equation (13). The line is R cal-
culated from the creep-slip model (equation [11]) us-
ing the same parameters as in (a).

t
V k C

r
s

L

= +





∆τ 1 1
. (7)

To determine the ratio of seismic to total slip R we use the
seismic slip resulting from elastic unloading of the fault,
given by ∆ ∆δ τseis s= / ,k and the total slip ∆δ total L r= V t .
Combining these definitions with equation (7) leads to

R
k C

= =
+

∆
∆

δ
δ

seis

total

1

1( / )
. (8)

Note that R is not directly dependent on loading velocity or
stress drop.

Stick-slip. Stick-slip behavior occurs when k K C. In
this case, equation (6b) is

τ τ≈ +o kV tL , (9a)

equation (7) becomes

t
kV

r
s

L

≈ ∆τ
, (9b)

and equation (6c) is

V
kV

C
≈ L . (9c)

Equations (9a) and (9b) are the same as expected from con-
stant-velocity loading of a fault with a truly static strength
threshold (e.g., Beeler et al., 2001) because, though fault
creep occurs during loading, the net creep is negligible
compared with the seismic slip, that is, from equation (8)
R � 1.

Aseismic slip. When k k C the fault can be effectively
aseismic. In this case, equation (6b) is

τ τ≈ +o CV tL , (10a)

equation (7) becomes

t
CV

r ≈ ∆τ s

L

, (10b)

and equation (6c) is

V V≈ L . (10c)

Provided k is small, as is expected in the Earth (e.g., Walsh,
1971), and since k k C, C is smaller still, and from equation
(10a), s � so . In other words, the shear stress is effectively
fixed at a constant yield stress. The recurrence interval
(equation [10b]) then becomes infinite, the interseismic slip
velocity is nearly equal to the velocity of the surrounding
fault plane, and R � 0.

Creep-slip. Creep-slip occurs when k and C are of simi-
lar magnitude. In this case considerable fault creep, relative
to seismic slip, occurs prior to failure, and s, tr, and V are
given by the general relations equations (6b), (7), and (6c).

Implications: Parkfield Microearthquakes

To further illustrate the range of responses expected
from equation (6b), consider repeating earthquakes with a
wide range of r. Combining equations (1a) and (1b) we find
k M= 1 81 0

1 3. ( / ) ,/µ τ∆ s and combining this result with equa-
tion (8), the ratio of stress drop to seismic slip of a circular
fault patch is

R

C M

=

+ 



















1

1
1 81

0

1 3
.

.
/

µ τ∆ s
(11)

Presuming that C is constant, large-moment events have
R � 1, and small events have R � 0 (Fig. 5a). For small
events, the value of R from equation (11) approaches 0 as a
power law
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Figure 6. Comparison of tr predicted by the creep-
slip model with the Parkfield data. (a) tr, equation (14)
with C � 3.0 MPa/cm, Dss�10 MPa, l � 3 � 1011

dyne/cm2, and VL � 2.3 cm/yr. (b) Parkfield data and
predictions of the creep-slip model using the same
parameters as in (a). Two choices of loading velocity
are shown, which represent the limits of estimated
subsurface creep rate appropriate for the Parkfield
segment (Harris and Segall, 1987; Nadeau and John-
son, 1998). The reference line in parts (a) and (b) is
the same as the dashed line in Figure 1, corresponding
to equation (2) using the parameters listed in Fig-
ure 6a.

R
C M≈









1 81

0
1 3

.
.

/

µ τ∆ s

(12)

This is a scaling relation for slip with earthquake size con-
sidered unlikely by Nadeau and Johnson (1998), and the
power law exponent (the slope in Fig. 5a) is independent of
loading rate, stress drop, and the strain hardening rate for
small events.

Now we consider estimated values of R for the 53 re-
peating microearthquake sequences at Parkfield compiled by
Nadeau and Johnson (1998). We assume that Dss, VL, and
C are constants and that all ruptures are circular. Using equa-
tions (1a) and (1b), the ratio of seismic slip to total slip is

R
M

V t
= 0 55

2 3
0
1 3

. .
/ /∆τ

µ
s

L r

(13)

As recurrence for the Parkfield sequences is largely inde-
pendent of seismic moment (Fig. 1), equation (13) requires
a systematic increase of R with moment. Assuming Dss �
10 MPa and VL �Vf � 2.3 cm/yr, we use equation (13) to
estimate R for the Parkfield sequences (Fig. 5b), and find the
Parkfield events are consistent with our creep-slip model if
C � 3 MPa/cm. However, this comparison between model-
predicted and inferred R assumes constant stress drop for the
Parkfield microearthquakes, which is debatable.

A fairer assessment of the model is a comparison be-
tween observed recurrence interval (Fig. 1) and model pre-
dictions. Using the circular patch stiffness, as derived from
equations (1a) and (1b) previously, in equation (7) we have

t
V

M

C
r

s

L s

=








 +













∆
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τ
τ

1

1 81

10
1 3

.

/

µ
(14)

(see Fig. 6a). At large seismic moments tr � M0
1/3; thus tr

continues to increase with increasing moment as a power
law, a result identical to the expectation based on no ase-
ismic slip (see Fig. 1). At small seismic moments tr � Dss/
CVL and, since C, Dss, and VL are assumed constant, tr is
independent of moment. Figure 6b compares the Parkfield
observations with the calculated variation of tr with M0 for
two choices of loading velocity. The loading velocity (the
subsurface creep rate of the SAF) for the Parkfield earth-
quake sequences is expected to vary spatially between 0.4
and 3.5 cm/yr (Nadeau and Johnson, 1998 after Harris and
Segall, 1987); so, we calculate two predictions correspond-
ing to these rates for C � 3.0 MPa/cm and Dss � 10 MPa.
These representations bound the data fairly well, and the
Parkfield data suggest that tr is weakly dependent on moment
at low M0 as required by the model, although the scatter in
the data is considerable.

Discussion

Whereas our calculations with equation (6b) argue for
creep-slip as a plausible explanation of the Parkfield repeat-

ing-event source properties, the strain-hardening rate where
creep-slip is observed in the laboratory is much larger (e.g.,
in Fig. 3 C � 309 MPa/cm) than required to fit the Parkfield
data with 10 MPa stress drop (C � 3 MPa/cm). As creep-
slip occurs when k and C are of similar magnitude, the value
of C used to model the seismic observations would result in
only aseismic creep in the laboratory (i.e., k C� ) simply
because laboratory stiffness is higher than the patch stiffness
of a small earthquake (k � 239–0.11 MPa/cm for Parkfield
events assuming Dss � 10 MPa). For example, using k �
5 � 102 MPa/cm, as appropriate for laboratory experiments,
VL � 0.1 lm/sec, Dss � 10 MPa, and C � 3 MPa/cm in
equations (7) and (8) we find R � 0.006 and tr � 3.35 �
105 sec. This recurrence interval exceeds the duration of
most laboratory tests; thus multiple stick-slip cycles (as ob-
served in Fig. 3) would not be expected in the lab for these
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parameter values. Furthermore, the total cycle displacement
(3.3 cm) predicted by C � 3 MPa/cm exceeds the limit of
most testing machines (e.g., Fig. 3). Thus, while creep-slip
is observed in the laboratory, scaling to earthquake dimen-
sions is not currently understood, and the strain-hardening
rates implied by the Parkfield sequences are not presently
validated by laboratory measurements. It is also worth not-
ing that the laboratory observations indicate a more compli-
cated nonlinear strain hardening than the simplified linear
strain hardening used in our model. A more realistic creep-
slip model, one whose strain-hardening rate is controlled by
an underlying physical mechanism, would be preferable to
equation (6b).

Previous studies have suggested simple scaling relation-
ships between the source parameters of small and large re-
peating earthquakes; for example, a scaling relation between
static stress drop and seismic moment has been proposed by
Nadeau and Johnson (1998) (Fig. 2). Whereas the results of
the present study could be used to extrapolate tr and R to
larger events (Figs. 5a and 6a), this is not recommended.
Laboratory observations indicate a wide range of possible
fault strengths (e.g., Morrow et al., 1982, 2000), and a wide
range of responses to stressing is expected to result from
variations in fault zone mineralogy alone. Even assuming
the creep-slip model equation (6b) is relevant to all repeating
earthquakes, it would be unwise to expect C to be spatially
constant for all fault segments within the San Andreas sys-
tem; possibly C should not even be treated as a constant
within the Parkfield segment, as we have done. It is also
unlikely that stress drops are constant for all earthquakes
(Abercombie, 1995a,b), as we have assumed. However, our
simple creep-slip model does reproduce the systematic vari-
ation in source properties with moment that is required by
the Parkfield observations.

Dichotomous classification of natural faults and fault
segments into aseismic or seismic may be too restrictive.
When examined at high enough resolution, laboratory faults,
even those that stick-slip, undergo precursory aseismic slip.
In the case of undercompacted gouges layers, which may
have porosity that resembles natural faults following stress
drop (e.g., Sleep and Blanpied, 1992), large amounts of
strain-hardening and aseismic slip can occur during initial
loading (Lockner, unpublished data). Thus laboratory-based
distinctions between aseismic slip (stable sliding) and stick-
slip (unstable sliding) are not simple, and intermediate be-
havior is possible (e.g., Fig. 3). Could earthquakes creep-
slip? Our analysis of the Parkfield events suggest this
possibility, but the source parameters of these events are not
well constrained and our explanation is not definitive (Na-
deau and Johnson, 1998; Anooshelpoor and Brune, 2001;
Sammis and Rice, 2001).

Conclusions

Small seismic fault patches could sustain relatively
large amounts of aseismic creep during the interseismic pe-

riod if such patches are ductile at low stress, strain harden,
and eventually experience brittle failure at higher stress. Un-
der these circumstances, if the stress drop is constant, the
ratio of seismic to total slip R increases with moment as
R Mo∝ 1 3/ , matching variations in aseismic slip required to
explain small repeating earthquake sequences at Parkfield.
For such faults that strain harden prior to earthquake failure,
small event recurrence interval is expected to be weakly de-
pendent on event size, as is observed for the Parkfield mi-
croearthquakes.

Appendix: Fault Patch Slip Budget

Consider the slip budget for a fault patch embedded in
and loaded by creep of the surrounding fault plane (Fig. 4).
Over one period of the seismic cycle the total slip

∆ ∆ ∆δ δ δtotal seis aseis= + , (A1)

where Ddseis and Ddaseis are the spatial averages over the
patch of seismic slip and aseismic slip, respectively. During
loading to failure, creep dL of the surrounding fault plane
elastically transfers stress to the patch through a loading
stiffness kL � ds/ddL, representing the spatially averaged
stress change over the patch per increment of loading. The
patch loading stiffness kL depends on the size of the fault
patch. If the fault patch itself slips during loading, stress is
relieved according to a displacement rate of unloading ku �
ds/ddaseis representing the spatially averaged stress change
per increment of slip of the patch, which also depends on
the size of the patch. For loading from a residual stress so to
a failure stress sf we then have

∆ ∆ ∆τ τ τ δ δs f L L u aseis= − = −o k k , (A2)

where DdL is the total creep displacement of the fault sur-
rounding the patch during the loading cycle. Noting that the
duration of earthquake stress drop is extremely short with
respect to the duration of the loading cycle, DdL is equivalent
to the total slip of the surroundings over the earthquake cy-
cle. We assume that over a single period of the seismic cycle,
total slip of the patch is equal to the total slip of the creeping
surroundings

∆ ∆δ δtotal L= . (A3)

In other words, the long-term creep rate of the fault and the
long-term slip rate on the patch are equivalent so that there
is no long-term slip deficit or, conversely, any excess seis-
mic-moment release. The static stress drop Dss is also related
to the fault slip through the displacement-averaged unload-
ing stiffness;

∆ ∆τ δs u seis= k . (A4)

Substituting for Dss from equation (A4) and for DdL from
equation (A3) into equation (A2) we have
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∆ ∆ ∆δ δ δtotal
u

L
seis aseis= +k

k
( ). (A5)

By combining equations (A1) and (A5), we find kL � ku;
we use a single value of stiffness k � kL � ku throughout
this article.
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