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Abstract In this study, rock friction “stick-slip” experiments are used to develop constraints on models of
earthquake recurrence. Constant rate loading of bare rock surfaces in high-quality experiments produces
stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is
approximately inversely proportional to loading rate. These laboratory events initiate due to a slip-rate-dependent
process that also determines the size of the stress drop and, as a consequence, stress drop varies weakly but
systematically with loading rate. This is especially evident in experiments where the loading rate is changed by
orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes
driven by afterslip, or low-frequency earthquakes loaded by episodic slip. The experimentally observed stress
drops are well described by a logarithmic dependence on recurrence interval that can be cast as a nonlinear slip
predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at
constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing
friction recurrence models. We present example laboratory catalogs that document the variance and show
that in large catalogs, even at constant loading rate, stress drop and recurrence covary systematically. The origin
of this covariance is largely consistent with variability of the dependence of fault strength on slip rate.
Laboratory catalogs show aspects of both slip and time predictability, and successive stress drops are strongly
correlated indicating a “memory” of prior slip history that extends over at least one recurrence cycle.

1. Introduction

For large earthquakes, per event displacement and dated recurrence from paleoseismic studies show that
recurrence is quasiperiodic [Schwartz and Coppersmith, 1984]. Similarly, stress drops and recurrence times from
some instrumented intermediate and small earthquakes are highly regular [Ellsworth, 1995; Nadeau and Johnson,
1998]. The spatial extent of a recurring source is thought to be determined andmaintained over time bymaterial
and rheological contrasts [Nadeau and Johnson, 1998] or geometric boundaries [Schwartz and Coppersmith,
1984]. Thus approximately the same fault area fails in repeated events with approximately the same moment,
deemed a “characteristic” earthquake by Schwartz et al. [1981], and with regularity relatable to the rate of
loading [Wallace, 1970; Schaff et al., 1999]. To what degree such recurring events are representative of seismicity
generally, and to what degree large and hazardous events are characteristic, remains poorly known and
controversial [Wesnousky, 1994, 1996; Page et al., 2011]. Nonetheless, characteristic recurrence models underlie
most regional and national hazards assessments of plate boundaries [Field et al., 2008; Petersen et al., 2008].

For a sequence of recurring earthquakes the average recurrence interval tr is the ratio of the average

earthquake slip δ to the loading rate

tr ¼ δ
VL � Vc

; (1a)

[Wallace, 1970], where the loading rate is the average rate of elastic loading displacement VL, minus any rate of
fault creepVc that occurs at the source (e.g., precursory or afterslip). For large earthquakes,VL is usually the rate of
plate motion. It has been suggested that models of recurrence that account for the fault’s physical properties
might allow for meaningful predictions of recurrence [e.g., Bufe et al., 1977; Shimazaki and Nakata, 1980]. In that
case Wallace’s definition of recurrence can be equivalently expressed in terms of the fault’s failure criteria and
frictional sliding properties. For example, the average slip δ is related to the average earthquake stress dropΔτ via
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the elastic stiffness, δ ¼ Δτ=k, while stress drop is
the difference between the initial τi and the final
stress τf (Figure 1), and average recurrence is

tr ¼ τi � τf
k VL � Vc
� � : (1b)

Because geologic and seismologic studies find
significant variance in recurrence and in slip or
stress drop [e.g., Schwartz and Coppersmith, 1984;
Nadeau and Johnson, 1998], in any formal forecast
or hazard analysis, recurrence is represented by
a probabilistic expression. Throughout this paper,
to characterize the variability of recurrence,
stress drop, and initial and final stress, we use the
fractional variation (coefficient of variation), the
ratio of the standard deviation to the mean, σy=y.
Here and throughout σy is standard deviation of
the measured quantity y, for example, σtr is the
standard deviation of the recurrence interval. In
discussing the size of this uncertainty in general
terms we often refer to its order; for example,
second-order variability is a value of σy=y on the
order of 0.1 or 10%, third order is σy=y on the
order of 0.01 or 1%, and so on.

For recurring earthquakes of magnitude M ≥ 5, σtr=tr is second order or larger, with a representative value of
around 0.5 [Hecker et al., 2013]. Therefore, even knowing the location and size of an impending earthquake, and
the time and slip of its prior occurrences, there is considerable uncertainty in the time of the next event in
the sequence. In previous studies, to generate a predictive model of recurrence, the number of independent
variables in equations (1a) and (1b) is reduced to a more manageable number such as 1 [Bufe et al., 1977] or 0
[Rubinstein et al., 2012a], based on physical intuition or a particular hypothesis. For example in the time-
predictable model of Bufe et al. [1977] creep velocity is assumed to be zero, while the elastic loading rate and
initial stress are assumed constant. The physical motivation for these choices is a laboratory-based model in
which the onset of slip occurs approximately at a threshold stress. Throughout this report we use the subscript i
to denote the event number within the sequence (Figure 1). For the time-predictable model, the previous
event’s final stress τf (i � 1), or equivalently the prior stress drop, Δτ(i � 1), directly determines the subsequent
recurrence interval tr(i)

tr ið Þ ¼ Δτ i � 1ð Þ
kVL

: (2a)

Variability in recurrence is due to variability in the stress drop or more exactly due to variance in the prior
final stress τf (i � 1). Similarly for the slip-predictable model of Shimazaki and Nakata [1980], the same
assumptions about creep and loading rate are made and the final stress is assumed constant so that the
pending stress drop (slip) is proportional to the recurrence interval,

Δτ ið Þ ¼ tr ið ÞkVL: (2b)

To date, arguments about whether models such as equations (2a) and (2b) provide any predictive value for
natural recurrence are subjective [Bufe et al., 1977; Shimazaki and Nakata, 1980; Rubinstein et al., 2012a];
indeed, Rubinstein et al. [2012a, 2012b] have proposed that the next recurrence time tr(i) is better predicted
by using tr over the previous events (N= 1, i � 1) rather than equation (2a) above.

In the current study we present new observations that may inform models of earthquake recurrence.
Seismic data do not record absolute levels of initial and final stress, making it difficult to directly confirm the
assumptions of models such as equations (2a) and (2b). Furthermore, while geodetic observations indicate
effectively constant rates of platemotion, the contribution of creep for many natural earthquake sequences is

Figure 1. Portion of a laboratory “stick-slip” experiment from
the Brown University rotary shear apparatus (experiment
fr116cq, see Figure 4 also). The time series of shear stress
shows stress drop and recurrence interval as defined through-
out this study. The recurrence interval tr(i) is the time between
the initial (peak) stress τi (i� 1) and τi (i) of consecutive failures,
t(i)� t(i� 1). The initial stress τi (i) and final stress τf (i) define
stress drop Δτ(i), the prior initial and final stresses define the prior
stress drop Δτ(i� 1).
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difficult to quantify and the nature of loading for small recurring earthquakes is thought to be due to creep
of the surrounding fault rather than directly from tectonic loading [Bufe et al., 1977; Nadeau and Johnson,
1998]. For these reasons we focus on recurrence in event catalogs generated during laboratory rock friction
experiments [Brace and Byerlee, 1966]. Primary advantages to laboratory tests are that loading rate is controlled,
fault area is constant, and fault slip and stress are measured directly. Thus, while equations (1a) and (1b) suggest
that there may be uncertainties associated with up to six variables (tr, k, VL, Vc, τi, and τf ), in the lab for a fault
with fixed area (fixed stiffness) and controlled loading velocity, the four remaining variables are directly
measured. The approach is intended to give more insight into potential covariances among these quantities
and should allow for a model of recurrence based on some physical understanding of the fault’s shear
resistance. In addition, it may be that recurrence in experiments shares some similarity in process with small
shallow or with larger earthquakes and that the controlled circumstances of the laboratory can reveal systematic
predictability that may be applied to better understand natural recurrence. An advantage of the rotary shear
geometry used in the present study is that it provides essentially unlimited sliding displacement. At short
displacement, stress drop, recurrence intervals, and other frictional properties evolve significantly with time
or slip. This complicates the analysis of data from such tests because models like equations (2a) and (2b)
are usually interpreted as requiring fault properties to be constant (stationary) [Rubinstein et al., 2012a, 2012b].
To deal with displacement or time dependencies of fault properties in experimental catalogs Rubinstein et al.
[2012b] developed approaches to remove the trends. In the experiments in this paper the fault surfaces are
slid until such time, and displacement dependencies are no longer apparent [Beeler et al., 1996].

1.1. Laboratory Earthquake Recurrence

Following Brace and Byerlee [1966], laboratory-scale recurrence experiments are often referred to as undergoing
“stick-slip”. In such a test (Figure 1), the fault is loaded at a constant rate intended to simulate tectonic loading.
The fault remains apparently stuck for some period of time, analogous to a natural earthquake recurrence
interval, and then fails, slipping rapidly producing a stress drop through unloading of elastic strain stored in the
rock and testing machine. The sequence repeats, resulting in a catalog of events whose statistical properties
can be studied and compared to natural sequences and to existing earthquake recurrence models or used to
develop new models of recurrence.

As an example of a laboratory sequence, and for consistency with previous work, Figure 2 shows the time
series of slip from a catalog [Kilgore and Beeler, 2010] used in a recent recurrence study [Rubinstein et al.,
2012b]. This particular example is used here because it is the only experiment analyzed by Rubinstein et al.
[2012b] that had no coherent slip- or time-dependent trend in stress drop or recurrence. As the same is true
of all of the new experiments described later in this paper, we assume throughout that the fault properties
are stationary. In the following brief analysis of this example we show some of the characteristics of lab catalogs
and how they compare with predictions of the recurrence models, equations (2a) and (2b).

Figure 2. Cumulative slip versus time for the experiment 010809 [Kilgore and Beeler, 2010; Rubinstein et al., 2012b]. Slip is
calculated from the frictional stress drop data bymultiplying by the unloading stiffness (3.3 MPa/mm) and the normal stress
(4 MPa). Fits of the data to slip (red) and time predictable (black) models are also shown. See text for a complete description.
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The experiment, run 010809, follows the approach of Junger et al. [2004] and was conducted on a large biaxial
press at the U.S. Geological Survey (USGS) in Menlo Park, California [Dieterich, 1981]. The press accommodates
samples 1.5 × 1.5 × 0.4m in dimension with a precut fault surface along the diagonal, 45° to the long dimensions,
resulting in a fault surface of length and depth of 2 and 0.4m, respectively. The load-bearing elements are
seven steel plates stacked and bolted together. The fault is loaded along the outward faces of the 1.5m long
sides of the fault blocks using four flat jacks pressurized with hydraulic oil using a computer-controlled servo
system. Flat jacks on opposite sides of the blocks are pressurized equally, thus, there are two orthogonal-
controlled forces applied to the blocks. Teflon plates between the frame and the jacks permit free slip at this
interface. Similarly, the weight of each of the sample halves are supported below by three stationary jacks
which have Teflon-surfaced load-bearing plates to permit easy horizontal motion of the blocks in response to
the loading stresses provided by the flat jacks. Samples are Sierra White granite from Raymond, California.
The fault surface was roughened using a specially designed frame and 30 grit SiC as described by Okubo and
Dieterich [1984]. The average shear and normal stress on the fault are derived from transducers recording
the pressure in the two independent sets of flat jacks. These two pressures are assumed to be the principal
stresses σ1 and σ3. The sequence of failure events was conducted at a normal stress of 4MPa. The fault was
loaded by raising the shear stress at 0.0001MPa/s while holding the normal stress constant until an unstable
shear failure of the fault occurred. Rapidly accelerating slip detected by an accelerometer triggers closure of
hydraulic valves isolating the flat jacks from the servo control system to prevent a response to the sudden
changes in the shear and normal stress. To repeat the experiment, the servo system is reset, the hydraulic
isolation valves are opened, and the loading procedure is repeated. The time required to reset the servo system
is small compared to the average recurrence interval. The static shear stress drop was calculated from the
flat jack pressures, and the duration of loading to failure is reported as the recurrence interval.

Ideally, the servo control system would maintain static pressure in the loading jacks during the event;
unfortunately, the triggered valve closure is relatively slow, occurring in approximately 0.4 s. Fortunately, the
response time of the servo system is slow relative to the duration of the dynamic rupture which is roughly 2ms.
The servo system responds to stress changes in around 0.01 s, which is also the sampling rate of the data
acquisition system. While the measurements of the failure stress are well resolved, the values of the final stress
may be somewhat influenced by loading from the servo-controlled loading system prior to valve closure.
Additional details of the loading in similar experiments are found in Beeler et al. [2012]. The contributions of
the loading system to the final stress values can be estimated from the measured rate that the servo control
system raises the shear stress prior to value closure (~0.125MPa/s, see Beeler et al. [2012, Figure A2]) and the
sampling interval (0.01 s). Accordingly, the final stress values may be underestimated by up to 0.001MPa.
Since this is a systematic bias to slightly larger values, it should not affect the conclusions of our analysis. The
standard deviation of the final stress (0.002MPa) is of the same order as that for the failure stress (Table 1),
suggesting that there are no significant machine effects on the variability.

For run 010809, variability in static stress drop and recurrence interval are modest with fractional uncertainties
of 8 and 11%, respectively (Table 1). Stress drop is defined by the initial and final stresses (Figure 1); these have
uncertainties of less than 1%, much smaller than that of the stress drop. The higher variability of the stress drop
arises because it is a relatively small fraction of the ambient stress, roughly 10% of the initial stress. The relation
between slip and recurrence is shown graphically by the standard “stair step” construction (Figure 2). Here the
stress drop data are converted to slip using the unloading stiffness and then plotted in sequence in absolute
time, t, assuming that there is no interseismic slip. Plots of this type were used in the development of the
physically motivated recurrence models (2a) and (2b) [Bufe et al., 1977; Shimazaki and Nakata, 1980]. The failure
times t(i) and the cumulative coseismic slip values δ(i) (red points) can be compared with the slip-predictable
model. The previous event slip values δ(i � 1) and subsequent failure times t(i) (black points) can be compared
to the time-predictable model of Bufe et al. [1977]. Fits to the cumulative slip and time data with either model

are very good. The coefficient of determination (R2) (R2 ¼ 1�

XN
i¼1

y ið Þ � f ið Þð Þ2

XN
i¼1

y ið Þ � yð Þ2
where y(i) are data, f(i) are

model predictions, and y is the data mean. R2 is a measure of the predictive power of a linear model.) exceeds
0.999 for both the time- and slip-predictable models fit to the data in this way. Based on these observations,
to second order, this laboratory data set is periodic and therefore also both time predictable and slip predictable.
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However, the models, equations (2a) and (2b), are intended to prospectively predict the next event in the
sequence rather than fit the overall sequence retrospectively, as done in the fits shown in Figure 2. In this
predictive context, recurrence times and stress drops are not well forecast by either of the models, equations
(2a) and (2b), [Rubinstein et al., 2012b]. This is apparent in a plot of the individual stress drops and recurrence
intervals (Figure 3). In this diagram, fits to the slip- and time-predictable models are lines defined by two

points: the origin (0,0) and the point containing the means tr Δτ
� �

. Analyzed in this way, these linear models

do not fit this data set well; R2 is 0.33 and �1.24 for the time- and slip-predictable models, respectively.
There are apparently uncorrelated variations in stress drop and recurrence about their mean values.

1.2. Purpose

The purpose of the present study is to characterize laboratory recurrence and to develop a preliminary
model of it that may be extrapolated to natural conditions. Because of the relatively small number of
recurrences and expected variability in the measurements, it is unlikely that the example data set for
experiment 010809 contains enough information to develop a useful physical model of recurrence at
constant loading rate that could be extrapolated to natural stresses and stressing rates. Among the issues
that need to be addressed are whether recurrence is essentially periodic within small uncertainties at
constant loading rate, as might be concluded from Figures 2 and 3, or if there is some correlation between
the recurrence interval and stress drop. Also, if there is correlation between recurrence and stress drop,
then which is the independent variable? The data from constant loading rate experiments in this study
have smaller variability than in previous studies, contain many tens to many hundreds of events, allow
better definition of the uncertainties, and provide leverage to the search for possible covariance of stress
drop with recurrence that is not resolved in small catalogs (Table 1).

Stressing rate differences between experiments and the Earth also are an important consideration since
many small repeating earthquake sequences are driven to failure by creep of the surrounding fault [Nadeau
and Johnson, 1998]. In cases where the creep rate is variable, for example, during afterslip following a large
nearby earthquake [Schaff et al., 1999; Uchida et al., 2004], or deep episodic slip [Thomas et al., 2012],
obviously, the loading rate is variable. For nonconstant loading, the recurrence interval is to first order
inversely proportional to the loading rate as in equations (2a) and (2b). That is, to produce first-order
variations in recurrence interval for a fault that is highly periodic (Figures 2 and 3) requires significant changes
in loading rate. Related to large changes in loading rate are expected changes in stress drop; previous

Table 1. Experiment 010809 (USGS)a

tstart (s) ti (s) τi (MPa) τf (MPa) Δτ (MPa) tr (s)

10,605.00 11,877.16 2.968 2.742 0.218 1,272.16
11,952.74 13,738.98 2.964 2.765 0.199 1,786.22
13,876.16 15,285.26 2.975 2.772 0.203 1,409.06
15,549.84 17,325.02 2.958 2.756 0.203 1,775.12
17,406.68 18,961.32 2.963 2.779 0.184 1,554.56
19,096.92 20,590.18 2.969 2.762 0.207 1,493.81
20,675.94 22,063.26 2.957 2.785 0.172 1,387.26
22,223.28 23,646.16 2.966 2.773 0.193 1,422.84
23,844.74 25,291.92 2.954 2.774 0.180 1,447.12
25,385.72 26,713.68 2.975 2.777 0.198 1,327.9
26,829.72 28,184.26 2.971 2.794 0.177 1,354.44
28,282.56 29,610.14 2.980 2.795 0.185 1,327.52
29,712.32 31,121.68 2.970 2.803 0.168 1,409.26
31,310.44 32582.68 2.969 2.804 0.165 1,272.16
32,677.84 33978.94 2.990 2.803 0.188 1,300.98
34,071.00 35424.02 2.991 2.794 0.198 1,352.96
36,006.72 37352.12 2.995 2.794 0.202 1,345.32

Mean 2.9725 2.7822 0.1900 1,418.3
Std ±0.012 ±0.019 ±0.015 ±151.81
Cv (0.004) (0.007) (0.077) (0.107)

aParameters: tstart = starting timeof the loading cycle (USGS) in s; ti= initial time, timeof the “initial stress” in s; τi= initial stress
in MPa; τf = final stress in MPa; Δτ = static stress drop in MPa; tr = recurrence interval in s; and VL = loading velocity in μm/s.
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laboratory studies [Wong and Zhao, 1990: Karner
and Marone, 2000;McLaskey et al., 2012] and studies
of natural earthquake recurrence [Scholz et al., 1986;
Kanamori and Allen, 1986; Vidale et al., 1994] find
systematic variations in stress drop with recurrence
time. The loading rates in the experiments in this
study span 4 orders of magnitude.

Issues related to uncertainty extend to the
development of physical models, for example, both
the time and slip predictable models assume
an exactly constant value of the final or failure
stress, unrealistic assumptions even in controlled
laboratory tests due to measurement and intrinsic
uncertainties. Sources of uncertainty such as
uncontrolled loading rate, static stress transfer
from nearby sources, and material and stress
heterogeneity are liable to be more numerous and
larger in natural catalogs. Based on the experiments
we construct a conceptual model of recurrence
that also accounts for expected uncertainties that
arise even in carefully prepared and controlled
experiments. Among the conclusions is that
laboratory recurrence has aspects of both time and
slip predictability; these tendencies are coupled
and arise directly from the rate-dependent physical
processes that lead to repeated failure. In addition,
both stress drop and recurrence are found to vary
systematically but nonlinearly with loading rate.

2. Experiments

The experiments were conducted at Brown
University in a high-pressure rotary shear apparatus
[Tullis and Weeks, 1986]. Catalogs of recurrence
with large event numbers and at varying, controlled
loading rates can be routinely acquired using this
testing machine where the available displacement
is effectively unlimited. The experiments are
on initially bare surfaces of Cheshire quartzite
(experiments fr102cq and fr116cq) and silica glass
(fr97sg). The sample assembly is as described by

Beeler et al. [1996]. The two cylindrical sample rings are epoxied into hardened steel sample grips. Sample
rings were cored from blocks of rock or glass. The rock rings were ground to height with a surface grinder.
Surface finish was obtained by grinding with wet #24 “dyanblast” SiC grit on a glass plate, resulting in a
centerline average roughness of ~0.01mm [Power et al., 1988]. The outer diameter of the cylinders is 53.98mm,
the inner diameter is 44.45mm, the total area of the fault is 735mm2, and the centerline circumference is
154.61mm. The upper sample grip is held fixed, and the lower grip is rotated by a steel piston which also
transmits the axial load. Shear and normal stress applied to the sample by the piston are measured with
an internal torque/load cell. A sliding, gas-tight jacket of Teflon rings and O rings excludes the confining
medium, in this case, nitrogen gas. The Teflon rings remain stationary with respect to the upper and lower
sample rings and slide against one another. The upper sample ring is vented to the atmosphere to prevent
the buildup of pore pressure in case of a pressure leak around the O rings. The experiments were conducted
at room temperature, a constant normal stress of 25MPa, confining pressure of 21MPa, and loading rates
between 0.01μm/s and 10μm/s.

Figure 3. Laboratory earthquake recurrence data after Junger
et al. [2004] from the USGS large biaxial press [Dieterich, 1981].
Data are from the same experiment shown in Figure 2:
17 recurrences plotted as stress drop normalized by normal
stress (frictional stress drop) versus recurrence interval. The
events are displayed in two different ways. In red symbols are
stress drop versus recurrence to enable comparison with a
fit of this data with the slip predictable model of Shimazaki
and Nakata [1980] (red solid line). For reference is a fit of the
data using a constant stress drop model (red dashed line).
The data are also plotted as recurrence versus previous stress
drop (black symbols) to enable comparison with a fit of this
data to the time-predictable model of Bufe et al. [1977] (black
solid line). Note that contrary to the choice of vertical and
horizontal axes, for this model, stress drop is the independent
variable. For reference is a fit of this data with a constant
recurrence interval model (black dashed line). The slip- and
time-predictable model fits are nearly the same, as expected.
The slight difference results from small differences in the
mean stress drop and mean recurrence due to there being
17 data points for the fit to the slip-predictable model and
only 16 for the fit to the time-predictable model.
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3. Observations

In this section the experimental observations are described and analyzed. Experiments at constant loading rate,
as in experiment 010809, are considered first immediately below. The measurements made in experiments at
different loading rates are described in the second subsection. In both cases, variability and covariability of stress
drop and recurrence are defined. Empirical descriptions of the stress drop, recurrence interval, failure stress,
final stress, and the variances of these quantities are developed that account for differences in loading rate.

3.1. Constant Loading Rate

During the bare surface quartzite experiment (fr116cq), while sliding at a constant loading rate,VL=0.3162μm/s,
34 repeated stick-slip failures were collected at displacements between 101.7 and 103.4mm (Table 2). The peak
strength preceding failure and the minimum stress following the slip event are used to define the stress drop
(Figure 1). This data set has two advantages over experiment 010809. First, there are twice as many events
and, second, the variability in the initial and final stresses, the stress drop, and the recurrence interval are
many times smaller. The higher reproducibility likely arises because of the relatively large displacements
attained before making the measurements and the use of a controlled constant displacement rate-loading
system. The standard deviation of the initial stress and final stress are 0.2% of their means, while deviations
in the stress drop and recurrence interval are a few percent at most. These improvements allow better

Table 2. Experiment fr116cq (Brown University)

ti (s) τi (MPa) τf (MPa) tr (s) Δτ (MPa)

847,181.62 17.708 15.75 1.958
847,332.15 17.636 15.721 150.53 1.915
847,475.37 17.641 15.694 143.22 1.947
847,624.83 17.65 15.685 149.46 1.965
847,779.40 17.655 15.659 154.57 1.996
847,931.77 17.652 15.652 152.37 2
848,084.15 17.65 15.646 152.38 2.004
848,236.80 17.635 15.646 152.65 1.989
848,387.24 17.648 15.627 150.44 2.021
848,539.70 17.662 15.632 152.46 2.03
848,697.27 17.662 15.629 157.57 2.033
848,856.83 17.664 15.627 159.56 2.037
849,006.21 17.62 15.631 149.38 1.989
849,161.63 17.63 15.627 155.42 2.003
849,321.27 17.654 15.642 159.64 2.012
849,476.71 17.624 15.632 155.44 1.992
849,630.16 17.619 15.641 153.45 1.978
849,781.87 17.623 15.656 151.71 1.967
849,930.19 17.631 15.659 148.32 1.972
850,081.57 17.642 15.677 151.38 1.965
850,235.01 17.637 15.684 153.44 1.953
850,387.61 17.65 15.654 152.6 1.996
850,530.89 17.598 15.642 143.28 1.956
850,682.26 17.63 15.646 151.37 1.984
850,835.87 17.625 15.626 153.61 1.999
850,986.43 17.606 15.617 150.56 1.989
851,136.81 17.609 15.593 150.38 2.016
851,289.26 17.582 15.594 152.45 1.988
851,437.70 17.576 15.624 148.44 1.952
851,585.96 17.58 15.596 148.26 1.984
851,740.31 17.565 15.597 154.35 1.968
851,897.88 17.579 15.615 157.57 1.964
852,044.06 17.559 15.619 146.18 1.94
852,194.57 17.564 15.581 150.51 1.983
Mean 17.626 15.642 151.91 1.984
Std ±0.034 ±0.036 ±3.85 ±0.028
Cv (0.002) (0.002) (0.025) (0.014)
r Δτ(i) tr(i) 0.55
r Δτ(i� 1) tr(i) 0.96
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definition of the relations between stress drop
and recurrence. These data are plotted in Figure 4
as stress drop versus recurrence and as previous
stress drop versus recurrence, in the same
way as for experiment 010809 in Figure 3.
The time- (N = 33) and slip-predictable (N = 34)
models shown for reference are essentially
identical (red and black solid lines), as expected
when the number of events is large and the
variances are low. Furthermore, stress drop covaries
with recurrence. The standard linear covariance (r)

(r ¼

XN
i¼1

x ið Þ � xð Þ y ið Þ � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

x ið Þ � xð Þ2 y ið Þ � yð Þ2
s ) between Δτ(i)

and tr(i) (black symbols) (Figure 4) is 0.55 (Table 2);
based on standard estimates of the probability
[Taylor, 1997], there is a 0.08% chance that
uncorrelated data would produce a correlation
coefficient this high or higher. The standard linear
covariance between the prior stress drop Δτ(i � 1)
and tr(i) (red) (Figure 4) is 0.46; there is 0.07%
chance that uncorrelated data would produce a
correlation coefficient this high or higher.

The trend between stress drop Δτ(i) and recurrence
tr(i) in this data set (Figure 4) is shown as the dashed
grey line offset from the data for clarity. This trend
differs in slope and physical origin from a strong
relationship between stress drop and recurrence
found by Karner and Marone [2000] using the
double direct shear geometry, which they denoted
β2. At a single loading rate, both stress drop and

recurrence interval vary systematically in Karner and Marone [2000]. For laboratory-measured stick-slip, where
all of the slip occurs seismically (“true” stick-slip), if the range of stress drops is wide, to first order, the
recurrence interval and stress drop will follow equations (2a) and (2b) with proportionality determined by the
imposed rate and elastic properties of the loading system [Beeler et al., 1998] as Karner and Marone [2000]
found; their value is β2 = kVL. This is the original physical motivation for the time-predictable and slip-
predictable models. For fr116cq the trend (Figure 4, dashed grey line) is lower than that predicted by the
loading velocity and stiffness, kVL = 0.017MPa/s (Figure 4, solid grey line).

For the experiment on bare surfaces of silica glass (fr97sg), two constant loading rate data sets, at VL= 1μm/s
and 10μm/s, were collected at displacements between 13 and 92mm, consisting of 1947 repeated failures
(Table 2). The loading rate was cycled between 1 and 10μm/s at every 1mm of load point displacement
(Figure 5a) so these are discontinuous, constant loading rate catalogs. Again, the peak strength associated
with failure and the minimum stress following stress drop are used to define the stress drop. In comparison
to fr116cq, the standard deviations in the initial stress (peak stress) and final stress are larger than in that
continuous loading rate experiment, up to 1.3% of the mean. However, the deviations in stress drop and
recurrence interval are only slightly higher than that in fr116cq and are a few percent. The data acquisition
rate limits the resolution of recurrence interval, resulting in the “binned” nature of the recurrence data
(Figures 5b and 5c). The acquisition rate in Figure 5b is ~1Hz, resulting in a limit on the resolution of
recurrence of about 1 s. The corresponding rate in Figure 5c is ~10Hz and the resolution limit is 0.1 s. This
undersampling produces possible errors on the failure and final stresses. In both cases the stressing rate
times the sampling rate is 0.05MPa. However, there is precursory slip so at the peak stress the effective

Figure 4. Thirty-four recurrences from sliding on initially bare
surfaces of quartzite (fr116cq) in the Brown University rotary
shear apparatus [Tullis and Weeks, 1986]. The data are plotted
as stress drop versus recurrence (red) and as recurrence versus
previous stress drop (black symbols). The black and red refer-
ence lines are shown are as in Figure 3 (see Figure 3 caption).
An additional reference line in grey has a slope that is the
stressing rate, the product of the machine stiffness and the
loading rate. For comparison is the slope of a linear fit to the
stress drop versus recurrence shown as the dashed grey line.
The data show covariance of stress drop with recurrence
regardless of whether the stress drop or previous stress drop
are considered (see text and Table 2).
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stressing rate is zero and the peak is always well
resolved (see Figure 1). The final stress has the
same resolution constraint, and there is much less
afterslip than precursory slip so the final stress has
a measurement error of up to 0.05MPa, which is 3
to 4% of the average stress drop. Although these
are small measurement errors, they are systematically
related to the measurement error on the recurrence.
Thus, if the data were perfectly periodic, the
measured recurrence and stress drop would fall on
a line that has a slope of the stressing rate kVL
with the maximum values being near the actual
recurrence and stress drop and the minimum values
being the actual values minus the maximum errors.
In other words, the data would fall on the Karner and
Marone [2000] β2 line.

Despite these complications of sampling rate, again,
stress drop covaries with recurrence. Comparing the
stressing rate (grey solid lines in Figures 5b and 5c) to
the trend, from a linear fit to the data (grey dash line),
shows that themeasurement error does not determine
the covariance between stress drop and recurrence.
The standard linear covariance between Δτ(i) and tr(i)
(black) (Figures 5b and 5c) is 0.47 to 0.64 (Table 3);
because of the large catalog size, it is extremely
unlikely for uncorrelated data to have a correlation
coefficient this high or higher (<1 × 10�46% chance).
The covariance between the prior stress drop Δτ(i� 1)
and recurrence tr(i) (black) (Figures 5b and 5c) is
between 0.34 and 0.57, and it is highly unlikely for
uncorrelated data to result in a correlation coefficient
this high or higher (<1 × 10�21% chance).

Because stress drop is the difference between the
failure and final stress, it is the individual covariances
of these stresses and recurrence that are more
fundamental to understanding relations between stress

Figure 5. Recurrence from sliding on initially bare surfaces of
silica glass (fr97cq) in the Brown University rotary shear appa-
ratus [Tullis and Weeks, 1986] at loading rates of VL = 1 μm/s
(N = 859), and VL = 10μm/s (N = 1096). (a) Representative
shear stress time series showing the discontinuous nature of
the catalogs consisting of multiple sequences at loading of
1 and 10mm/s. (b and c) The data are plotted as stress drop
versus recurrence (red symbols) and as recurrence versus
previous stress drop (black symbols). The reference lines
shown are as in Figures 3 and 4 (see Figure 3 and 4 captions).
The data show covariance of stress drop with recurrence
regardless of whether the stress drop or previous stress drop
are considered. The data acquisition rate limits the resolution
of recurrence interval, resulting in the “binned” nature of
the recurrence data. The acquisition rate in Figure 5b was
~1Hz, resulting in a limit on the resolution of recurrence of
about 1 s. In Figure 5c the rate was ~10Hz and the resolution
limit is 0.1 s.
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drop and recurrence. Furthermore, it
is one or the other of the failure or
final stress that vary with recurrence
in the slip- and time-predictable
models. To examine the relationships
among these stresses and recurrence
we use the highest resolution data
set. For the experiment fr116cq, the
uncertainties on the stresses are
nearly an order of magnitude smaller
than for experiment 010809 and for
fr97sg. For fr116cq, the failure stress
increases with increasing recurrence
(Figure 6a and 6b, upper traces),
whereas the final stress decreases

with increasing recurrence (Figure 6a and 6b, lower traces). The lines are fits to the data. These trends appear
regardless of whether the stresses considered are those following a recurrence interval or those preceding
the recurrence interval, although the trends are stronger and are only statistically different from zero for
the stresses following the recurrence (see caption to Figure 6). So unlike the slip- and time-predictable
models, neither the failure nor final stresses are strictly constant in this data set. On the other hand, like
the slip- and time-predictable models, the failure and final stresses correlate with recurrence, the primary
difference being that both stresses correlate, rather than just one.

In the absence of physical models, it is difficult to understand the relations between stress drop and
recurrence or absolute stress and recurrence in these data sets. For example, because recurrence correlates
with prior stress drop and subsequent stress drop correlates with recurrence, it is unclear which is the
dependent variable; this becomes, perhaps, even less clear when the failure and final stresses are considered.
It is also difficult to think about these data in the context of existing time- and slip-predictable models
because the data sets show aspects of both models and because the models, as originally defined, are
mutually exclusive. The observations instead suggest a physical model in which the independent variable is
some other fault property that influences stress drop and recurrence, a property that more naturally explains
their interdependence as an apparent effect rather than as cause and effect.

3.2. Variable Loading Rate

A necessary approach to establishing relations between stress drop and recurrence is to vary these quantities
more significantly than in the experiments shown thus far, where the deviations are only a few percent.
Physical models with elastic rebound suggest that recurrence should vary approximately inversely with
loading rate [Beeler et al., 1998, 2001], and there are examples of stick-slip at different loading rates in the rock
and analog fault friction literature, notably, Wong and Zhao [1990], Karner and Marone [2000], and McLaskey
et al. [2012]. The relation of stress drop to recurrence is in some cases not explicitly defined, but it is
empirically well described by Karner and Marone [2000] where it conforms to the expectation. However, at
constant loading rate, stress drop and recurrence vary significantly in Karner and Marone [2000] relative to the
most highly variable data set considered so far, experiment 010809, so we analyze the higher resolution
results from earlier experiments [Weeks et al., 1991] instead. The essential aspects of recurrence, consistent with
the previous studies, are apparent by superimposing the VL=1 and 10μm/s data sets from fr97sg (Figure 5a and 5b)
on the same plot (Figure 7a and 7b). Recurrence changes by approximately an order of magnitude for a
10 times change in loading rate. Meanwhile, the stress drop changes about 10%, increasing with decreasing
loading rate, consistent with previous laboratory and modeling studies of rock friction [e.g., Karner and Marone,
2000;He et al., 2003;McLaskey et al., 2012]. The reference lines in Figure 7a indicate that strict constant recurrence
or constant stress drop is not adequate for these data. A physical model where both stress drop and recurrence
interval vary with loading velocity (the control variable in the experiments) is required. This is consistent with
the rock friction literature wherein it is thought, on the basis of numerical simulations, that the “steady state rate
dependence” of the fault strength, dτss/d lnV=� σn(b� a), [Dieterich, 1979; Ruina, 1983] controls both quantities
[e.g., Beeler et al., 2001]. Furthermore, the covariance of stress drop with recurrence at each loading rate is

Table 3. Experiment fr97sg (Brown University)

τi (MPa) τf (MPa) tr (s) Δτ (MPa)

VL = 1 μm/s, N = 859
Mean 20.33 18.58 45.52 1.75
Std ±0.25 ±0.25 ±1.79 ±0.030
Cv (0.012) (0.013) (0.039) (0.017)
r Δτ(i) tr(i) 0.47
r Δτ(i� 1) tr(i) 0.34

VL = 10 μm/s, N = 1096
Mean 19.83 18.58 3.34 1.24
Std ±0.27 ±0.25 ±0.16 ±0.028
Cv (0.014) (0.014) (0.047) (0.022)
r Δτ(i) tr(i) 0.64
r Δτ(i� 1) tr(i) 0.57

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011184

BEELER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8779



different, with dΔτ/dtr increasing with increasing
loading velocity, suggesting that this covariance is
also due to the rate dependence of fault strength.

A separate data set from silica glass experiment
fr97sg (Table 4) shows the same kind of behavior.
The data are from sliding at loading rates between
10 and 0.1μm/s, at load point displacements
between 91.5 and 97.4mm. Between 91.5 and
93.4mm displacement, a sequence of loading rate
steps from 10 to 1, to 0.316 and to 0.1μm/s
produced recurring events (Table 4); at lower
loading velocities of 0.0316, 0.01, and 0.0032μm/s,
slip was stable. When the loading rate was increased
in a stepwise fashion, eventually back to 0.1μm/s
at a load point displacement of 95.2mm, the fault
began to again undergo near-periodic slip that
continued at loading rates of 0.316, 1, 10, and 1μm/s
again (Table 4) out to a load point displacement of
97.4mm. This is thus a catalog with four different
constant loading rates, but the data at each loading
rate are not continuous. These data define a similar
relation between stress drop and recurrence
(Figure 7b) as in the larger catalogs (Figure 7a). An
analogous data set for quartzite (fr102cq) at load
point displacements between 92.5 and 93.4mm
also shows a systematic relationship between
stress drop and recurrence (Figure 7c). These were
collected at loading rates of 0.316, 0.1, 0.0316, and
0.01μm/s. Empirically the relationship between
stress drop and recurrence is nonlinear and is
consistent with the previous experimental work on
room temperature behavior of rock and analog
material friction [Wong and Zhao, 1990; Karner and
Marone, 2000; McLaskey et al., 2012] which show a
logarithmic dependence (Figure 7a) of the form

Δτ ¼ c ln
tr
t0
; (3)

where t0 is the intercept, the projected recurrence
interval at zero stress drop, and c ln (10) is the
slope in a semilog plot (Figure 8a). Because of
the large differences in loading velocity, the fit to
the recurrence tr(i) and stress drop Δτ(i) shown
in Figure 7 is essentially identical to a fit to this
catalog that results if the prior stress drop Δτ(i� 1)
is used instead.

3.3. Normalized Stress Drop and Recurrence

An aspect of these laboratory recurrence data that deviates markedly from physical models such as Bufe et al.
[1977] and Shimazaki and Nakata [1980] and most other conceptual descriptions of recurring earthquakes is
that the experiments show significant interevent slip (precursory and afterslip) [Wallace, 1970]. Qualitatively,
the amount of interevent slip in these catalogs can be determined by normalizing the stress drop by the
normal stress (Δτ/σn) and normalizing the recurrence using the fault stiffness, k, normal stress, σn, and
the loading velocity (tr VL k/σn) (Figure 8b). Occurrences with no interevent slip (“true” stick-slip) plot on the

Figure 6. Variation of initial and final stresses with recurrence
in quartzite experiment fr116cq. (a) Failure and final stresses
defining the stress drop Δτ(i) following recurrence interval tr(i).
The lines are fits to the data. Both show shallow slopes: an
increase in the initial strength with recurrence and a decrease
in final stress with recurrence. These trends have nonzero slopes;
for τi(i) the slope is 0.0027MPa/s ± 0.0014 and for τf(i) the slope
is �0.0024MPa/s ± 0.0016. (b) Initial and final stresses defining
the stress drop Δτ(i� 1) preceding the recurrence interval tr(i).
The lines are fits to the data. As in Figure 6a, both stresses show
weak correlation with recurrence interval: an increase in the
initial strength with recurrence and a decrease in final stress
with recurrence. However, these trends are not as strong as
in Figure 6a and within the uncertainty are not significantly
different than zero: for τi (i� 1) the slope is 0.0013MPa/s ± 0.0014
and for τf (i� 1) the slope is �0.0013MPa/s ± 0.0014.
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reference line with zero intercept and a slope
of 1, corresponding to tr=Δτ/kVL. All of the
events in these catalogs undergo measureable
interseismic slip. Normalizing the data also
removes the stressing rate trend kVL (β2 from
Karner and Marone [2000]) and emphasizes
the covariances that are observed at constant
loading rate (Figures 3 and 4). That is, for
example, in the variable loading rate catalog of
fr97sq at 10 μm/s and 1 μm/s, there are enough
measurements (N= 30 and 20, respectively)
to resolve the effect at constant loading rate,
resulting in low slope trends in the normalized
data (Figure 8b).

4. Friction-Based Models
of Recurrence

In laboratory friction experiments, two particular
fault properties lead to periodic failure at
constant loading rate: (1) the steady state fault
strength decreases with slip rate [Dieterich,
1979]; this allows for the onset of unstable slip
and a stress drop and (2) fault strength increases
rapidly with time if the sliding velocity is near
zero [Dieterich, 1972]; this allows the fault to
restrengthen immediately following a slip event
and for recurrence if the loading rate is lower
than the rate of restrengthening. In friction
models of these behaviors (rate- and state-
dependent friction), both effects are relatable to
the steady state rate dependence of the fault
strength [Dieterich, 1979; Ruina, 1983]; that is,
the failure strength preceding a stress drop and
the sliding strength during the stress drop
depend on (b� a) [Rice and Tse, 1986; Scholz
et al., 1986; Kanamori and Allen, 1986; Cao and
Aki, 1986]. In the following discussion we
consider the laboratory stick-slip data sets and
how they can be interpreted using the existing
rate- and state-dependent constitutive
equations. In the immediately following section,
we discuss recurrence at variable loading rate,
and in the subsequent section, recurrence at
constant loading rate.

4.1. Variable Loading Rate

Equation (3) is the relationship governing repeated
laboratory failure for rate and state friction [Gu
and Wong, 1991; Beeler et al., 1998, 2001; Karner
and Marone, 2000] that has also been used to
describe small earthquake recurrence [Vidale et al.,
1994; Marone et al., 1995] and, in few instances,
large event recurrence [Cao and Aki, 1986;

Figure 7. Recurrence from sliding on initially bare surfaces of silica
glass (fr97sg) and quartzite (fr102cq) in the BrownUniversity rotary
shear apparatus [Tullis andWeeks, 1986] at loading rates between
0.032 and 10 μms. (a) fr97sg at VL = 1 and VL = 10 μm/s. These
are the same data shown in Figures 5a and 5b. Reference lines
are constant stress drop (red dashed) and constant recurrence
(black dashed) as defined by the means. (b) fr97sg at VL = 10, 1,
0.32 and 0.1 μm/s. The solid line is a fit to the data using
equation (3). (c) fr102cq at VL = 0.1, 0.32, 0.01 and 0.032 μm/s.
The solid line is a fit to the data using equation (3).
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Table 4. Experiments at Different Loading Rates (Brown University)

ti (s) τi (MPa) τf (MPa) tr (s) Δτ (MPa) VL (μm/s)

Silica Glass fr97sg
613,805.50 20.064 17.896 2.167 0.100
614,384.06 20.134 17.917 578.56 2.217 0.100
614,931.75 20.125 17.925 547.69 2.200 0.100
615,452.56 19.924 17.992 1.932 0.316
615,608.31 19.939 18.004 155.75 1.935 0.316
615,762.12 19.952 18.007 153.81 1.944 0.316
615,907.44 19.715 18.024 1.691 1.000
615,950.62 19.746 18.023 43.18 1.723 1.000
615,993.69 19.741 18.045 43.07 1.695 1.000
616,037.56 19.759 18.066 43.87 1.693 1.000
616,076.56 19.739 18.062 39.00 1.677 1.000
616,119.56 19.763 18.069 43.00 1.694 1.000
616,162.56 19.767 18.059 43.00 1.708 1.000
616,206.62 19.763 18.062 44.06 1.701 1.000
616,248.62 19.761 18.068 42.00 1.692 1.000
616,290.62 19.743 18.041 42.00 1.702 1.000
616,333.00 19.755 18.053 42.38 1.702 1.000
616,353.38 19.216 18.098 1.118 10.000
616,356.44 19.218 18.099 3.06 1.119 10.000
616,359.62 19.238 18.107 3.18 1.132 10.000
616,362.81 19.245 18.11 3.19 1.135 10.000
616,366.00 19.233 18.121 3.19 1.112 10.000
616,368.88 19.235 18.127 2.88 1.107 10.000
616,371.94 19.257 18.122 3.06 1.135 10.000
616,375.06 19.258 18.117 3.12 1.141 10.000
616,378.38 19.246 18.106 3.32 1.140 10.000
616,381.50 19.243 18.116 3.12 1.127 10.000
616,384.62 19.232 18.116 3.12 1.115 10.000
616,387.81 19.23 18.091 3.19 1.139 10.000
616,390.75 19.214 18.091 2.94 1.123 10.000
616,393.75 19.21 18.093 3.00 1.117 10.000
616,396.81 19.211 18.085 3.06 1.126 10.000
616,399.88 19.217 18.078 3.07 1.139 10.000
616,402.94 19.212 18.088 3.06 1.124 10.000
616,405.88 19.202 18.066 2.94 1.136 10.000
616,409.12 19.208 18.07 3.24 1.138 10.000
616,412.31 19.22 18.074 3.19 1.147 10.000
616,415.25 19.188 18.076 2.94 1.112 10.000
616,418.06 19.181 18.072 2.81 1.108 10.000
616,421.12 19.201 18.073 3.06 1.128 10.000
616,424.31 19.213 18.058 3.19 1.155 10.000
616,427.50 19.206 18.062 3.19 1.143 10.000
616,430.62 19.183 18.059 3.12 1.123 10.000
616,433.75 19.192 18.049 3.13 1.143 10.000
616,436.81 19.178 18.037 3.06 1.141 10.000
616,439.81 19.169 18.042 3.00 1.127 10.000
616,442.75 19.164 18.043 2.94 1.121 10.000
616,445.75 19.176 18.03 3.00 1.146 10.000
616,511.25 19.684 17.98 1.704 1.000
616,555.38 19.696 17.969 44.13 1.727 1.000
616,597.31 19.679 17.999 41.93 1.680 1.000
616,638.31 19.669 17.988 41.00 1.681 1.000
616,682.31 19.687 17.99 44.00 1.698 1.000
616,727.38 19.687 17.971 45.07 1.716 1.000
616,771.31 19.687 17.99 43.93 1.697 1.000
616,814.38 19.692 17.993 43.07 1.700 1.000
408,727.72 19.419 18.241 1.178 10.000
408,730.97 19.39 18.256 3.25 1.134 10.000
408,734.16 19.408 18.272 3.19 1.136 10.000
408,737.22 19.418 18.281 3.06 1.137 10.000
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Table 4. (continued)

ti (s) τi (MPa) τf (MPa) tr (s) Δτ (MPa) VL (μm/s)

408,740.41 19.419 18.274 3.19 1.145 10.000
408,743.47 19.419 18.274 3.06 1.144 10.000
408,746.56 19.428 18.279 3.09 1.149 10.000
408,749.72 19.434 18.29 3.16 1.144 10.000
408,753.00 19.455 18.293 3.28 1.162 10.000
408,756.19 19.43 18.284 3.19 1.146 10.000
408,759.47 19.443 18.302 3.28 1.142 10.000
408,762.44 19.442 18.303 2.97 1.139 10.000
408,765.50 19.428 18.295 3.06 1.134 10.000
408,768.66 19.445 18.298 3.16 1.147 10.000
408,771.84 19.442 18.286 3.18 1.156 10.000
408,775.12 19.44 18.277 3.28 1.164 10.000
408,778.12 19.411 18.259 3.00 1.152 10.000
408,781.38 19.413 18.263 3.26 1.150 10.000
408,784.56 19.422 18.27 3.18 1.152 10.000
408,787.53 19.416 18.274 2.97 1.143 10.000
408,790.66 19.424 18.277 3.13 1.146 10.000
408,793.75 19.413 18.256 3.09 1.158 10.000
408,796.94 19.432 18.256 3.19 1.177 10.000
408,800.09 19.41 18.254 3.15 1.155 10.000
408,803.41 19.416 18.255 3.32 1.161 10.000
408,806.66 19.419 18.259 3.25 1.160 10.000
408,809.84 19.417 18.261 3.18 1.156 10.000
408,812.84 19.407 18.247 3.00 1.160 10.000
408,816.00 19.404 18.247 3.16 1.157 10.000
408,819.34 19.414 18.242 3.34 1.172 10.000
408,887.56 19.939 18.203 1.736 1.000
408,930.47 19.932 18.217 42.91 1.715 1.000
408,974.50 19.921 18.212 44.03 1.709 1.000
409,016.47 19.921 18.228 41.97 1.693 1.000
409,059.44 19.916 18.207 42.97 1.709 1.000
409,103.44 19.929 18.21 44.00 1.719 1.000
409,147.41 19.926 18.21 43.97 1.716 1.000
409,189.31 19.91 18.198 41.90 1.713 1.000
409,231.31 19.927 18.212 42.00 1.715 1.000
409,276.28 19.947 18.222 44.97 1.725 1.000
409,321.31 19.929 18.19 45.03 1.738 1.000
409,633.53 20.187 18.214 1.973 0.316
409,788.09 20.181 18.21 154.56 1.971 0.316
409,945.62 20.177 18.212 157.53 1.965 0.316
411,108.88 20.413 18.207 2.206 0.100
411,635.06 20.379 18.184 526.18 2.195 0.100
412,223.25 20.381 18.182 588.19 2.199 0.100

Quartzite fr102cq
830,854.10 18.160 16.594 0.010
834,497.82 18.114 16.615 3,643.72 1.499 0.010
838,204.35 18.140 16.611 3,706.53 1.529 0.010
841,837.54 18.155 16.641 3,633.19 1.514 0.010
845,512.60 18.186 16.662 3,675.06 1.524 0.010
848,304.18 18.253 16.680 0.032
849,433.29 18.086 16.671 1,129.11 1.415 0.032
850,541.97 18.119 16.689 1,108.68 1.43 0.032
851,640.32 18.130 16.672 1,098.35 1.458 0.032
852,697.91 18.129 16.682 1,057.59 1.447 0.032
853,757.93 18.135 16.679 1,060.02 1.456 0.032
854,333.00 18.103 16.717 0.100
854,651.48 18.021 16.702 318.48 1.319 0.100
854,974.76 18.034 16.711 323.28 1.323 0.100
855,303.09 18.055 16.691 328.33 1.364 0.100
855,626.61 18.038 16.689 323.52 1.349 0.100
855,944.82 18.050 16.714 318.21 1.336 0.100
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Scholz et al., 1986; Kanamori and Allen, 1986; Scholz, 1990]. The appropriate constant of proportionality
implied by rate and state equations follows from the work of Wong and collaborators [Gu and Wong, 1991;
Beeler et al., 2001; He et al., 2003], who found that the initial stress increases with recurrence interval (decreasing

loading velocity) and that dynamic sliding friction
is nearly independent of the recurrence interval.
If these properties are applied in a spring slider or
a dynamically propagating expanding crack
model, slip exceeds that necessary to drop stress
to the dynamic strength. Thus, the final arresting
stress is lower than the dynamic strength by a
fixed amount, a phenomenon that is referred to
as “overshoot” [McGarr, 1994]. This final stress
decreases with recurrence. The net effect is that
while neither initial stress nor final stress are
independent of recurrence [cf. Bufe et al., 1977;
Shimazaki and Nakata, 1980], they both vary
systematically and the static stress drop follows
the logarithmic dependence on recurrence:

Δτ ið Þ ¼ σn b� að Þ 1þ ξð Þln tr ið Þ
t0

: (4)

(b� a) is positive [Ruina, 1983]. ξ is the fractional
overshoot, which for slider block models can be
between 0 (final stress is equal to the sliding
strength) and 1 (complete overshoot) [Beeler et al.,
2001]. Because stress drop is proportional to slip,
equation (4) is a nonlinear slip-predictable model
of the form shown in Figures 7a, 7b, and 8a.

Figure 9a shows the expectations for stress drop
and recurrence from rate and state friction using a
single degree of freedom slider block. Figure 9b is
the normalized version of the same calculations;
these are detailed in the Appendix A. To show the
relation among friction constitutive parameters,
stress drop, and recurrence directly, the acceleration
term in the slider block equations [Johnson and
Scholz, 1976; Rice and Tse, 1986] is ignored and
motion is damped by radiation losses [Rice, 1993].
This leads to no overshoot (ξ =0) and the slope of
the plot of stress drop versus log10 recurrence time
at large recurrence times is simply related to the
steady state rate dependence as σn(b� a) ln (10)
[Beeler et al., 2001]. At short recurrence times the
stress drop decreases with decreasing recurrence

Table 4. (continued)

ti (s) τi (MPa) τf (MPa) tr (s) Δτ (MPa) VL (μm/s)

856,160.68 18.054 16.756 0.316
856,242.64 17.872 16.729 81.96 1.143 0.316
856,335.03 17.914 16.729 92.39 1.185 0.316
856,427.50 17.909 16.709 92.47 1.2 0.316
856,520.06 17.883 16.686 92.56 1.197 0.316
856,612.56 17.882 16.687 92.5 1.195 0.316
856,704.98 17.882 16.678 92.42 1.204 0.316

Figure 8. Stress drops over a range of loading rates. (a) Data from
silica glass (solid symbols) and quartzite (open symbols) shown in
Figures 7a and 7b plotted on semilog axes. The lines are fits to
the data with the logarithmic form equation (3). (b) The same
data as in Figure 8a plotted as normalized stress dropΔτ/σn =Δμ
and normalized recurrence tr VLk/σn using k/σn = 0.002/μm. A
reference line with intercept of zero and slope of 1 defines true
stick-slip, where there is no slip during the interevent period.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011184

BEELER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8784



more rapidly than predicted by log linear relations.
This deviation from the log linear trend results
from increased percentages of precursory and
afterslip relative to seismic slip. Very low recurrence
intervals correspond to high rates of loading and as
the duration of loading approaches the duration of
the stress drop, the motion becomes oscillatory
rather than stick-slip. The values of the constitutive
parameters used in simulations are consistent
with the experimentally observed values at these
loading rates and confirm the validity of equation
(4) as an appropriate physical model for laboratory
recurrence (Figures 7 and 8) that is empirically
well described by equation (3).

4.2. Constant Loading Rate

We also use a slider block model to simulate the
covariation of recurrence and stress drop seen in
the constant loading rate data (Figures 4–6). The
details of the calculations are described in the
Appendix A. Because the fault’s rate dependence
is observed to be the controlling variable in the
recurrence model (4), we explore the possibility
that slight variations in the rate dependence
underlie the covariance of stress drop and
recurrence at a single loading rate. Our approach
builds on an idea of Karner and Marone [2000],
namely, that including a stochastic component in a
model of periodic slip might account for some of
the variability seen in experimental recurrence
data. Their approach was to randomly change the
value of the state variable during the stress drop.
Our calculations are similar to Karner and Marone
[2000] in using rate and state friction; however, the
rate dependence rather than state is changed
during the stress drop. The change is made when
the slip speed is highest; the rationale also follows
Karner and Marone [2000], that changes in fault
properties would coincide with the most extreme

rates of stress and slip change. The values of both a and b are randomly selected from normal distributions.
This approach produces a systematic variation of stress drop with recurrence (Figure 10). The covariance is
apparent whether the previous or the subsequent stress drop is used, as in the experiments (Figures 4 and 5).

Systematic variations of the failure and final stress with recurrence interval (Figure 6) are also captured in the
simulations. Prior and subsequent failure stresses increase with recurrence in the simulations (Figures 11a
and 11b, top traces), and prior and subsequent final stresses decrease with recurrence interval (Figures 11a and
11b, lower traces), consistent with the observations. These simulations provide a possible explanation for the
observations; however, this may not be a unique explanation and it is possible that unexplored variations in
other frictional properties such as state [Karner and Marone, 2000] and slip weakening distancemay also lead to
behavior consistent with the laboratory data.

5. Discussion

Some aspects of why constant rate-loading simulations produce systematic covariation of the failure stress,
final stress, and the stress drop with recurrence when the rate dependence, (b� a), is varied are qualitatively

b)

a)

Figure 9. Stress drops over a range of loading rates. (a) Simulations
with rate and state friction with (b� a) = 0.004, σn = 25MPa,
dc = 1μm, k= 0.05MPa/μm and loading rates of 0.01, 0.1, 1, 10,
100, 1000, 2500, and 5000 μm/s (see Appendix A). The line is a
fit to the four lowest loading rates with the logarithmic form
equation (4). For these simulations the overshoot is zero, ξ = 0 in
equation (4). (b) The same data as in Figure 9a plotted as nor-
malized stress drop Δτ/σn and normalized recurrence tr VLk/σn.
A reference linewith intercept of zero and slope of 1 defines true
stick-slip, where there is no slip during the interevent period.
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explained by analogy to the numerical studies of
periodic slip with rate and state friction by He
et al. [2003] and Beeler et al. [2001]. In summary,
these studies show that stress drop decreases
with loading rate, equivalently increases with
recurrence interval, as in equation (3), by an
amount controlled by (b� a). In detail, the change
in stress drop corresponds to changes in both the
failure and final stresses, increases, and decreases,
respectively, when the recurrence interval is
increased. Keeping these systematics in mind, we
can apply these results to the case of a change in
(b� a) at constant loading rate. Say, for example,
that during a stress drop the rate dependence
b� a increases. If fault slip overshoots as it does in
the simulations, this corresponds to a lower value
of the final stress because the final stress depends
on recurrence as σn (a� b) (ξ) ln tr [He et al., 2003;
Beeler et al., 2001]. This lower value of the final
stress, the starting stress for the subsequent
reload, increases the subsequent recurrence
interval because it takes longer to reload to the
next peak stress. This explains the interdependence
between recurrence and the prior value of the
final stress (Figure 11b, lower trace). The increase
in the subsequent recurrence time corresponds
to a slight increase in the failure stress as the
failure stress also depends on the logarithm of the
loading time as on σn (b� a), explaining the
relation between the peak stress and the
recurrence interval (Figure 11a, upper trace).

The other aspects of the simulations, the relation between final stress and the prior recurrence interval
(Figure 11a, lower trace), and failure stress on the subsequent recurrence interval (Figure 11b, upper trace)
seem to result from more extended memory effects. For example, continuing to consider the example
discussed in the previous paragraph, where (b� a) is increased during a stress drop, if (b� a) then remained
constant through the next stress drop, there would be a similar relationship between the final stress and
the prior recurrence interval as between the failure stress and the prior recurrence. That is, the failure stress
scales as σn (b� a) ln tr and the final stress as σn (a� b) (ξ) ln tr [He et al., 2003; Beeler et al., 2001]. In the actual
simulations, the rate dependence is changed during this stress drop, and yet there is a muted relationship
(Figure 11a, lower trace) between the resulting final stress and the prior recurrence interval that is consistent
with the expected result had the rate dependence not changed, indicating some memory of the prior value
of (b� a), or equivalently reflecting that the peak stress was high prior to the change in (b� a). This kind
of longer-term memory also qualitatively explains the relation between the prior failure stress and the
subsequent recurrence interval (Figure 11b, upper trace).

That said, in some cases the details of the simulations are different from the observations, for example, in the
experiments the slope of stress drop versus recurrence is lower than the stressing rate line (grey dashed lines
in Figures 4, 5b, and 5c), whereas the slope in the simulations is indistinguishable from the stressing rate.
Apparently, there is a weaker relationship between these two quantities in the experiments, there is an
additional systematic source of uncertainty not accounted for in the simulations, or the particular constitutive
relationships used are not entirely appropriate. Understanding the origin of this difference is particularly
important because any relation between prior stress drop and subsequent recurrence interval, a general time
predictability, is potentially useful in prospective forecasting of earthquake recurrence and failure time.
Empirical relationships might be established in more extensive continuous experimental catalogs.

Figure 10. Simulations of stress drop and recurrence at constant
loading rate with variable fault rate dependence. Forty-one
recurrences from a slider block model with rate and state friction
using parameters appropriate for quartzite at 25MPa normal
stress and a loading velocity of 0.3162μm/s (see Appendix A).
The rate and state constitutive parameters, a and b, used are
chosen randomly from normal distributions at the peak velocity
during each stress drop. The mean values are a= 0.008 and
b= 0.012 each with standard deviation of 0.7%. Here the simu-
lations are plotted as stress drop versus recurrence (red) and as
recurrence versus previous stress drop (black). The data show
covariance of stress drop with recurrence regardless of whether
the stress drop or previous stress drop are considered, as seen in
the experiments (compare with Figures 4 and 5).
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While the existing strict time predictable, slip
predictable, and constant stress drop/constant
recurrence characteristic models are all ruled out
by the experiments presented in this study, the
catalogs are at least to second-order characteristic,
with low order, more general time, and slip-
predictable properties. According to our arguments
all of these tendencies result from the rate
dependence of fault strength. For consideration of
different loading rates, the relationship (4) or (3) fits
the experimental observations and cases of natural
earthquake recurrence [Cao and Aki, 1986; Scholz
et al., 1986; Kanamori and Allen, 1986], in particular,
where the loading rate is varied, presumably by
afterslip: Schaff et al. [1999], Vidale et al. [1994],
Marone et al. [1995], and Beeler et al. [2001]. This
relationship should also apply during natural
constant rate loading under certain circumstances;
for example, equation (4) could be combined with
a stochastic component based on laboratory
variance from constant loading rate experiments
(Figures 4 and 5) to estimate recurrence probability
following a main shock. Using such a model will
produce immediately post-main-shock recurrence
probabilities that are effectively zero, due to the
rapid restrengthening observed in laboratory
studies [Dieterich, 1972]. More generally, including
uncertainties of the constitutive properties in
deterministic models should allow more direct
application to natural occurrence than perfectly
periodic rate- and state-dependent frictionmodels.

5.1. Future Laboratory Work and Application
to Natural Faulting

If prior stress drop influences the recurrence
interval and if recurrence interval influences the
subsequent stress drop as implied by Figures 4–6,
then successive stress drops should covary. Indeed,
in the continuous catalog fr116cq (N= 33), prior
and subsequent stress drops τ(i� 1) and τ(i) are
quite strongly correlated (Figure 12). The linear
covariance is r = 0.62; there is only a 0.014%
chance that uncorrelated data would result in a
covariance this large or larger. This implies that
during recurrence cycles, fault strength has an
extended memory of prior slip history that may be

expected from rate- and state-dependent friction [Ruina, 1983]; this behavior is also captured in the same
simulation shown in Figures 10 and 11 (Figure A1). Possibly related effects arise in some multicycle dynamic
rupture simulations [Radiguet et al., 2013]. While it may be that these longer-term correlations extend even
further in time than a single cycle in the experiments, those details are beyond the scope of the present study.
A larger concern is whether such memory effects could occur at natural loading rates and recurrence intervals.
The loading rates used to generate the experimental catalogs are between 0.32 and 10μm/s, roughly 300 to
10,000 times larger than the long-term slip rate of the San Andreas. The recurrence intervals are between a few
and about 150 s, so “memory” is not an appreciable amount of time relative to the cycle of even the smallest

b)

a)

Figure 11. Variation of initial and final stresses with recurrence
at constant loading rate with variable fault rate dependence.
These are the same simulations as in Figure 10. (a) The initial
and final stresses defining the stress drop Δτ(i) following
recurrence interval tr(i). The lines are fits to the simulations.
Both showweak dependence: an increase in the initial strength
with recurrence and a decrease in final stress with recurrence,
qualitatively similar to the experimental observations (Figure 6a).
(b) The initial and final stresses defining the stress drop Δτ(i� 1)
preceding the recurrence interval tr(i). The lines are fits to the
data. As in Figure 11a, both stresses show correlation with
recurrence interval: an increase in the initial strength with
recurrence and a decrease in final stress with recurrence,
qualitatively similar to the observations (Figure 6b).
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repeating earthquakes. Short recurrence
times of repeating earthquakes on the
San Andreas are around 1 year [e.g.,
Nadeau and Johnson, 1998], more than
5 orders of magnitude longer than the
longest recurrences in the experiments.
While the equations used in the
simulations in this paper could be used
to extrapolate the effects, it would be
more convincing and more appropriate
to conduct experiments that determine
whether these effects arise at recurrence
times that are orders of magnitude
longer than in the present study. So
some careful experiments are needed
to ensure that the memory effects seen
in experiments extrapolate in both
loading rate and stiffness, i.e., in stressing
rate τ̇ ¼ kVL .

Related to issues of extrapolation is
the size of the covariances seen in the

constant loading rate experiments, relative to the documented variability seen in natural settings. In these
experiments, covariance of stress drop with recurrence and cycle duration memory effects are only established
in highly periodic, very low variance catalogs with large numbers of recurrences. Because of the large numbers
and small uncertainties, it may be that whether such effects occur in natural catalogs cannot be resolved
due to other much larger natural sources of variability. Comprehensive analysis of natural sequences is needed.
On the other hand, if the covariance arises from uncertainty in the steady state rate dependence, as in our
simulations, it is possible and perhaps more likely that such variations are larger in natural settings due to
material heterogeneity, variable influences of chemical environment, etc. and that covariance and memory
effects are more robust in natural sequences. More extensive numerical calculations could be used to better
understand issues associated with extrapolation.

A final concern about the applicability of these laboratory results involves the physical mechanism. The
underlying rate-dependent effects that lead to the stress drop in the experiments also control the size of the
eventual stress drop and therefore how that stress drop changes with loading rate as well as all of the other
details that manifest as covariance between stress drop and recurrence, and as memory effects. In natural
settings, even for very small repeating earthquakes, the slip and slip rates during stress drop are much higher
than in the lab. The higher slips and slip rates may cause shear heating sufficient to change the mechanism
that controls dynamic strength. Under those circumstances, the relationships between stress drop and
recurrence are expected to be very different than in the present experiments. For the simple recurrence
model (4), initial stress is related to the steady state rate dependence and the final strength to the rate
dependence via an overshoot parameter. For shear-heating-induced dynamic weakening the initial stress
will follow scaling consistent with (4), but the dynamic sliding strength is much lower and the degree of
overshoot may in some cases be determined by the fault strength itself rather than by inertial effects
[e.g., Beeler, 2006]. At present, verified constitutive relationships for dynamic weakening are only available
for shear melting and flash weakening [Nielsen et al., 2008, 2010; Rice, 2006]. Some implications of these for
recurrence might be explored in numerical and theoretical studies.

6. Conclusions

In earthquake recurrence experiments, constant rate loading of bare rock surfaces produces deviations from
a perfectly periodic model that are second order or smaller. When loading rate is varied, recurrence is
approximately inversely proportional to loading rate. Laboratory events initiate due to slip-rate-dependent
processes that also determine the size of the stress drop and, as a consequence, laboratory data sets show

Figure 12. Covariance of prior stress drop τ(i� 1) with stress drop τ(i) from
the experiment fr116cq. Dashed line is a fit to the data. Data are color
coded by sequence number (i) to indicate order within the catalog.
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that stress drop varies weakly but systematically with loading rate. Experimentally observed stress drops are
well described by a recurrence model containing a logarithmic dependence on recurrence interval, where
the fault’s rate dependence of strength is the key controlling physical parameter. Laboratory recurrence is
not exactly periodic; even at constant loading rate, stress drop and recurrence interval covary systematically.
The covariance is consistent with variations of the fault’s rate dependence of strength. Recurrence shows
aspects of both time and slip predictability, and stress drop correlates strongly with the previous stress drop,
indicating an earthquake-cycle-long memory of prior slip history.

Appendix A: Simulations of the Experiments

For simulation of periodic slip with rate and state friction we use a single degree of freedom spring slider
block [Johnson and Scholz, 1976; Rice and Tse, 1986]. The equation of motion can be expressed as the balance
of the mass times acceleration against the difference between the spring force (here expressed as having
units of stress) and the frictional resisting stress, less the radiated energy,

T
2π

� �2 dV
dt

¼ δL � δð Þ � τ
k
� χ
k
∂δ
∂t

: (A1)

T is the characteristic period of oscillation, T ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m=Ak

p
where m is mass, A is fault area, and k is the elastic

shear stiffness of the fault (in units stress/displacement); δ is slip on the fault, δL is load point displacement,
the shear resistance or fault strength is τ, χ = μ/2β, where β is the wave speed and μ is the shear modulus.
The spring force, equivalent to the fault shear stress, is k(δL� δ). The radiation damping term χdδ/dt is
used to approximate energy lost as propagating seismic waves, here assumed to be planar waves [Rice,
1993]. The particular choice χ is appropriate if β is the shear wave speed and all radiation results from
shear waves [Rice, 1993].

The fault strength is attributed to rate and state friction using the particular formulation following Rice
and Tse [1986]:

τ ¼ σn f o þ aln V=V0ð Þ þ θð Þ (A2a)

dθ
dt

¼ � V
dc

θ þ bln
V
V0

� �
; (A2b)

dθ
dt

¼ b
dc

V0 exp
�θ
b

� V

� �
(A2c)

where f0 is a constant, a and b are second-order constants relative to f0, V is slip speed, V0 is a reference
slip speed, dc is a characteristic length scale, and σn is normal stress; θ is a state variable with the possible
physical interpretation of fractional contact area on the sliding surface [Dieterich, 1979]. Equations (A2b)
and (A2c) are two proposed representations of the state variable [Ruina, 1983].

Two different types of simulations are done in this study: (1) constant loading rate with varying fault properties
and (2) constant fault properties over a range of loading rates. To simulate recurrence at constant loading
rate, equation (A1) was used. To illustrate the relationship between stress drop and recurrence for rate and
state friction at simulations over a wide range of loading velocities, for simplicity, the inertial term is ignored
and radiation losses limit the motion.

A1. Variable Loading Rate and Constant Fault Properties

The equation of motion used is (A1) with no acceleration:

δL � δð Þ ¼ τ
k
þ χ
k
∂δ
∂t

: (A3)

This approach produces no dynamic overshoot; that is, slip arrests when the spring force drops to the level
of the sliding resistance. Simulations were conducted at a range of loading rates. At each rate, the spring
load point is displaced at VL, resulting in a sequence of periodic slip events. The recurrence time is measured
from successive values of the peak strength, and the stress drop is the difference between the peak and
final stresses, as in the experimental measurements (Figure 1). Simulations were conducted at 0.1, 1, 10, 100,
1000, 2500, and 5000μm/s. The results of these calculations are shown in Figure 9.
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A2. Constant Loading Rate and
Variable Fault Properties

The equation of motion used is (A1).
Simulations were conducted at a single
loading velocity VL=0.3162μm/s,
V0=3.162μm/s, dc =1μm, f0=0.7,
k =0.0525MPa/μm, and σn=25MPa.
Because equations (A1) and (A2a), (A2b),
(A2c) have intrinsic time constants that
are different by many orders of
magnitude, these must be solved using
time steps appropriate for the smallest
time constant [Rice and Tse, 1986].
The calculations use the state variable
equation (A2c). To make the numerical
calculations faster we have used a value
of T=0.1 s, which is likely to be orders of
magnitude higher than the characteristic
period of the testing machine. This
causes the motion to be inertia limited
and produce complete overshoot,

whereas the overshoot in the experiments is not known. Το simulate the effect of variability in the rate
dependence on stress drop and recurrence at a constant loading rate, the parameters defining the rate
dependence, a and b, were each changed a small amount once per cycle to values selected randomly from
a normal distribution. For a the mean of the distribution is 0.008, and the standard deviation is 0.7% of themean.
For b themean of the distribution is 0.012, and the standard deviation is 0.7% of themean. The parameters a and
b were changed during each stress drop at the time when dV/dt=0, the slip rate is at its maximum and
approximately one half of the slip during the stress drop has already occurred. The motivation for choosing this
particular time to change the rate dependence follows Karner andMarone [2000]; this is the timewhen rates of slip
and stress change are at their maximums and thus the most likely time for the fault to change its properties; it
is otherwise an ad hoc choice. The other parameters used in the simulations are consistent with the apparatus
elastic properties, normal stress, and the frictional properties of quartzite. The results of the simulations shown in
Figures 10, 11 and A1 indicate that small changes in these constitutive parameters lead to systematic changes
in the failure stress, final stress, stress drop, and recurrence interval during constant rate loading that are of the
same sense and qualitatively similar to those seen in the experiments. In particular, the previous stress drop
correlates with stress drop (Figure A1) capturing the cycle-longmemory observed in the experiments (Figure 12).
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