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Short Notes

On the Expected Relationships among Apparent Stress, Static Stress Drop,

Effective Shear Fracture Energy, and Efficiency

N. M. Beeler, T.-F. Wong, and S. H. Hickman

Abstract We consider expected relationships between apparent stress 7, and static
stress drop At using a standard energy balance and find 7, = A7 (0.5 — &), where
¢ is stress overshoot. A simple implementation of this balance is to assume overshoot
is constant; then apparent stress should vary linearly with stress drop, consistent with
spectral theories (Brune, 1970) and dynamic crack models (Madariaga, 1976). Nor-
malizing this expression by the static stress drop defines an efficiency #, = 7,/At,
as follows from Savage and Wood (1971). We use this measure of efficiency to
analyze data from one of a number of observational studies that find apparent stress
to increase with seismic moment, namely earthquakes recorded in the Cajon Pass
borehole by Abercrombie (1995). Increases in apparent stress with event size could
reflect an increase in seismic efficiency; however, 7, for the Cajon earthquakes
shows no such increase and is approximately constant over the entire moment range.
Thus, apparent stress and stress drop co-vary, as expected from the energy balance
at constant overshoot. The median value of #,, for the Cajon earthquakes is four
times lower than 7, for laboratory events. Thus, these Cajon-recorded earthquakes
have relatively low and approximately constant efficiency. As the energy balance
requires 75, = 0.5 — &, overshoot can be estimated directly from the Savage—Wood
efficiency; overshoot is positive for Cajon Pass earthquakes. Variations in apparent
stress with seismic moment for these earthquakes result primarily from systematic
variations in static stress drop with seismic moment and do not require a relative
decrease in sliding resistance with increasing event size (dynamic weakening). Based
on the comparison of field and lab determinations of the Savage—Wood efficiency,
we suggest the criterion #, > 0.3 as a test for dynamic weakening in excess of that
seen in the lab.

Introduction

Many studies find apparent stress to increase systemat-
ically with seismic moment M, (Kikuchi and Fukao, 1988;
Kanamori et al., 1993; Singh and Ordaz, 1994; Abercrom-
bie, 1995; Mayeda and Walter, 1996; Perez-Campos and Be-
roza, 2001; Prejean and Ellsworth, 2001). For example, 0.5
< M < 3 earthquakes recorded at 2.5 km depth in the Cajon
Pass, California, borehole have apparent stresses that in-
crease by 2 orders of magnitude with seismic moment from
less than 0.01 MPa for the smallest earthquakes to approach-
ing 1 MPa for the largest earthquakes (Fig. 1a) (Abercrom-
bie, 1995). Similarly, for earthquakes recorded in a borehole
at Long Valley, California, M 0.5 to M 5 earthquakes have
apparent stress that increases from less than 0.01 MPa for
the smallest earthquakes to greater than 1 MPa for the largest
earthquakes (Prejean and Ellsworth, 2001). Data from
broadband recordings in southern California (Kanamori et

al., 1993) extend to even higher magnitude (M >6) and
show the same general trend (Fig. 1b). Since the apparent
stress 7, = uE /M, (where u is the shear modulus) corre-
sponds to radiated energy (E,) per unit area per unit slip,
these observations suggest that the source properties of small
and large earthquakes are different, so different that the
larger earthquakes of the Kanamori et al. (1993) data set
radiate roughly 1000 times more energy per unit area per
unit slip than the small earthquakes of Abercrombie (1995)
(Fig. 1b).

Many other seismological observations are not consis-
tent with apparent stress increasing with moment. The large
body of observational data suggests that earthquake source
processes are independent of event size. For example, most
data compilations find that seismic moment and ruptured
fault area A are related as M, =« A3 because, at least for
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Figure 1. Radiated energy versus moment. (a)

Data from Abercrombie (1995). Dashed lines with
slope of 1 are lines of constant apparent stress, cal-
culated assuming 4 = 30,000 MPa. The solid line is
a linear least-squares fit to log E, versus log M,,, which
has slope equal to 1.25. A fit with slope of 1 (not
shown) coincides with the dashed 0.1 MPa contour.
(b) The data from Abercrombie (1995) shown in panel
(a) combined with data of Kanamori et al. (1993) that
extend to higher seismic moment. Dashed lines are as
in panel (a). The solid line is a fit to both data sets
and has slope equal to 1.24.

circular ruptures, M, varies as M, < At,A*?, these obser-
vations require stress drop Az, independent of moment over
the entire observable magnitude range (Aki, 1967; Kanamori
and Anderson, 1975; Hanks, 1977). Increasing apparent
stress with moment is also not expected from most earth-
quake source models. For dynamic crack models, so long as
shear fracture energy is negligible or self-similar (e.g., Ma-
dariaga, 1976; Boatwright, 1980), apparent stress scales with
static stress drop; if stress drop is scale independent as ex-
pected, these models yield constant apparent stress. Simi-
larly, spectral theories of the earthquake source require ap-
parent stress to be independent of event size. For example,
as shown by Hanks and Thatcher (1972), for the Brune
(1970) source model and a circular rupture, apparent stress
is entirely independent of event size; the apparent stress as-
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sociated with the S wave is a fixed fraction of the static stress
drop.

Under what circumstances would apparent stress in-
crease with seismic moment? Kanamori and Heaton (2000)
noted that because of larger displacements, shear heating
will be larger for larger earthquakes; they suggested that
trends of apparent stress with seismic moment may reflect
progressively lower fault shear resistance with increasing
earthquake size due to melting or pore fluid pressurization.
On the other hand, Ide and Beroza (2001) and Ide et al.
(2002) believed that trends of increasing apparent stress with
moment, at least in some studies, are artifacts due to mea-
surement or analysis errors associated with estimating radi-
ated energy. Bandwidth limitations can lead to underesti-
mated radiated energy, particularly for small earthquakes
(Ide and Beroza, 2001), which can have corner frequencies
of the same order as the maximum observable frequency.
For such earthquakes, to determine apparent stress, some of
the radiated energy must be estimated instead of measured,
otherwise an artificial size dependence of apparent stress can
arise. Other arguments against size scaling of apparent stress
were presented by Ide et al. (2002). By independently de-
termining site and path effects and a frequency-dependent
attenuation, Ide et al. (2002) found the Long Valley borehole
earthquakes have stress drop and apparent stress that do not
vary systematically with seismic moment, contrary to the
original analysis of Prejean and Ellsworth (2001).

In this note, we do not attempt to directly determine
whether apparent stress does or does not increase with mo-
ment, nor do we further discuss the possible analysis and
measurement errors of previous studies. Instead, we deter-
mine the expected relationships between apparent stress and
other seismic source parameters and therefore consider the
possible physically based explanations that allow apparent
stress to increase with seismic moment, as seemingly is ob-
served. Like Kanamori and Heaton (2000) and Abercrombie
and Rice (2001), our approach is based on a simple energy
balance similar to that used by Orowan (1960) and Savage
and Wood (1971). Our analysis of the energetics of seismic
faulting follows from adopting the ratio of the apparent
stress to the static stress drop as a quantitative measure of
the “efficiency”; this approach is implied by analysis of Sav-
age and Wood (1971). In addition we explicity consider the
role of dynamic overshoot in influencing the apparent stress
and this ratio. Using this approach, we compare seismolog-
ical data, particularly data from the Cajon Pass earthquakes
of Abercrombie (1995), to laboratory observations where
static stress drop and dynamic strength are measured di-
rectly. Our comparison and analysis suggest that variations
in apparent stress with seismic moment for the Cajon Pass
data result primarily from variations in static stress drop with
seismic moment and that overshoot is positive for these
earthquakes. If in addition we explicitly analyze the contri-
bution of the fracture energy, then variations in apparent
stress can arise from trade-offs between fracture energy and
overshoot behavior during dynamic rupture.



Short Notes

Energy Balance

In this section we analyze, in the simplest and most
general way we could think of, the factors that determine
the size of apparent stress during earthquake stress drop.
Symbols used in our analysis, and their definitions, are listed
in Table 1. We first consider the total energy released by an
earthquake and then develop an expression for the fraction
that is radiated. The total energy released during seismic
stress drop is W = TAd, where A is the ruptured fault area,
d is the seismic slip spatially averaged over the rupture sur-
face area, and 7 is the spatially averaged stress during the
earthquake. The spatially averaged beginning 7, and ending
7, stresses are related to T by T = (7, + 7,)/2 and the static
stress drop Az, to the beginning and ending stresses by
= 13 — 7,. Note that this static stress drop and the dynamic
stress drop 74 = 13, — 7, are defined with reference to 7,
(Fig. 2), which corresponds to the initial stress. In some
treatments, particularly those that consider fracture energy,
initial stress differs from the peak or yield stress 7, defining
a “strength excess” 7, — 7, which is an important parameter
in determining slip and rupture speeds during dynamic rup-
ture (e.g., Andrews, 1985). We do not explicitly consider
dynamic rupture in this article. The yield stress does not
appear in the energy balance approach we use in this article,
even when we consider the fracture energy explicitly in a
later section; as seismologic observations seem to provide
no constraint on the yield stress or the strength excess (Gua-
terri and Spudich, 2000), we ignore the excess in the re-
mainder of this article.

The total energy released per unit rupture area can be
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depicted schematically in a plot of stress versus displace-
ment (Fig. 2). With reference to Figure 2a, the total energy
released, here having units of joules per square meter (equiv-
alently pascal meters), is the area under the heavy dashed
line. All of our subsequent analyses can be derived graphi-
cally from such stress versus displacement diagrams. The
total energy released during seismic stress drop can be al-
ternatively expressed as W = TM,/u, where u is the shear
modulus and M, is the seismic moment (M, = udA). This
total energy W is balanced by the sum of energy that is
dissipated by frictional heating and fracture in the fault zone
Er = T.M,/u and the radiated energy E, = M,1,/u, that is,

W = Ep + Es. (1a)
Here 7, and 7, are the spatially and displacement-averaged
fault shear resistance and apparent stress, respectively. When
normalized by the fault area and average slip, the energies
in equation (la) have dimensions of stress, i.e.,

(1b)

Three examples of possible relative sizes of the terms in
equation (1b) are depicted in Figure 2. Due to inertial effects,
the final stress 7, may be different from the average resisting
stress Ty, and this overshoot phenomenon will be explicitly
considered here. In many dynamic crack models, the over-
shoot 7, — 7, is positive (e.g., Madariaga, 1976), but if local
fault healing induces dynamic slip termination then the over-
shoot can be negative (e.g., Ide, 2002).

Table 1
Symbols Used in This Study and Their Definitions
u Shear modulus
E, Radiated energy
A Fault area ruptured during seismic slip
d Seismic slip spatially averaged over the seismic rupture
T Displacement-averaged shear stress spatially averaged over the seismic rupture
w Total energy released during seismic slip, W = TAd
Ex Sum of energy dissipated by frictional sliding and stored in surface energy during
seismic slip, Ex = T, My/u
T, Apparent stress, T, = uEJ/M,
M, Seismic moment, M, = udA
Ty Initial stress spatially averaged over the seismic rupture
7y Yield stress or peak stress spatially averaged over the seismic rupture
T Stress at the cessation of seismic slip spatially averaged over the seismic rupture
At Static stress drop spatially averaged over the seismic rupture, Aty = 7, — 1
Aty Dynamic stress drop spatially averaged over the seismic rupture, Aty = 7, — 7¢
Ty Displacement-averaged shear strength spatially averaged over the seismic rupture
¢ A measure of overshoot, & = (T, — 1,)/At,
How Savage-Wood efficiency, 7, = 7,/AT
75 Residual fault strength
G, Effective shear fracture energy, G, = (T, — tpd
T, Fracture stress, . = 7, — 7 = G./d
I A measure of overshoot specific to linear slip-weakening fault strength &. = (t; — 7,)/A7,
1., Fracture efficiency, n,, = 7./At

R Radiation efficiency, ng = 27,/At,
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If we follow McGarr (1999) to define a stress overshoot
¢ = (Tx — 71)/A14thatis normalized by the static stress drop
Az, then the apparent stress can be written as

7, = A1(0.5 — &). (1c)

Note that overshoot in equation (1c) is bounded (¢ < 0.5).
As equation (1c) implies, observed variations of apparent
stress with seismic moment result from trade-off between
static stress drop and overshoot. A simple implementation
of this balance is to assume constant overshoot. In that spe-
cial case, apparent stress should vary linearly with stress
drop, a result that is consistent with spectral theories (Brune,
1970) and dynamic crack models (Madariaga, 1976). In the
following, we allow for the general case where stress drop
and overshoot are both allowed to vary with moment.
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Figure 2. Schematic diagrams showing the energy per
unit fault area (e.g., joules per meter squared) released
during an earthquake. This energy per fault area can be
expressed equivalently as stress times displacement;
stress and displacement are the axes of the figures. Thus,
the energy/fault area corresponds to an area on the plot
(e.g., the shaded region in each diagram that corresponds
to fracture energy). The total energy released expressed
in terms of spatially averaged stress units is T = 7 +
7,, Where T is the mean shear stress, 7 is the displace-
ment-averaged strength, and 7, is the apparent stress.
Strength (heavy black line) is shown as a function of fault
displacement during stress drop. Stress (heavy black
dashed line) is also shown; the area under this stress line
is the total energy released per unit fault area. The dy-
namic overshoot is ¢ = (T, — 7,)/(ty — 7;). The lower
limit of stress is generally thought to not coincide with
zero; however, this lower limit is not constrained by seis-
mic observations, that is, for earthquakes the stress drop
Az, is known and 7 is unknown (e.g., Randall, 1972). In
these three examples, the static stress drop is fixed, while
the effective shear fracture energy G, (stippled), apparent
stress 7, = T — Ty, and fracture stress 7, = T, — T are
nonzero. (a) In this example, the dynamic strength is
similar in size to the mean stress but is somewhat smaller
than the final stress, leading to positive overshoot,
¢ = 0.27, and a small Savage-Wood efficiency, 7, =
t,/At, = 0.23. This case is consistent with laboratory
observations of stick-slip faulting (e.g., Okubo and Die-
terich, 1984) and elastodynamic fracture models of earth-
quake stress drop (see summary in Kostrov and Das
[1988]). (b) In this second example, the average dynamic
strength is equal to the final stress so there is no over-
shoot, £ = 0, leading to higher efficiency, 5, = 0.5,
than in panel (a). (c) In this final example, the average
dynamic strength is much lower than the final stress; this
is a case of dynamic weakening greatly exceeding that
seen in laboratory experiments (Fig. 2a), as might be
caused by shear melting or pore fluid pressurization with
self-healing rupture. Overshoot is negative, ¢ = —0.5,
and the Savage—-Wood efficiency is very high, 7, = 1.

Analysis

In this section, we show that a simple measure of effi-
ciency, which follows from equation (1c), provides a useful
context for analyzing source properties that might scale with
event size. The conventional seismic efficiency, the ratio of
the radiated energy to the total energy released, or equiva-
lently the ratio of apparent stress to mean stress, has been
estimated for earthquakes, for example by Savage and Wood
(1971) and McGarr (1994, 1999). However, 7 is usually not
well known and cannot be determined from seismic data,
making # generally difficult to estimate reliably. A different
measure of efficiency, the ratio of apparent stress to the static
stress drop

”SW = Ta/ATss (2)
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is more easily determined. Savage and Wood (1971) first
considered bounds on apparent stress relative to the size of
the static stress drop, thus we refer to ratio (2) as the Savage—
Wood efficiency. A quantity equal to twice equation (2),
called the radiation efficiency was considered by Husseni
and Randall (1976) and Husseni (1977). The radiation effi-
ciency is simply the percentage of energy associated with
the stress drop that is radiated; the Savage—Wood efficiency
(equation 2) is one-half the radiation efficiency (see Discus-
sion). Example possible values of equation (2) are shown in
Figure 2; also see Ide (2002).
A simple relation for #,,, follows from equation (1c)

New = 05 = & 3)

As with 7, the overshoot ¢ is a stress measure normalized
by the static stress drop. The overshoot measures whether
the static stress drop is larger (¢ > 0; Fig. 2a) or smaller
(¢ < 0; Fig. 2¢) than the dynamic stress drop 7, — 7. Al-
ternatively, and more to the point of our analysis, overshoot
measures how large the dynamic strength 7, is relative to the
residual stress 7,; high values of overshoot reflect high dy-
namic strength relative to the stress level (Fig. 2a), and low
values of & reflect low relative strength (Fig. 2¢). Thus, equa-
tion (3) equates the Savage—Wood efficiency (known from
apparent stress and static stress drop) to the relative dynamic
strength (&).

Lines of constant overshoot are straight with zero slope
in a plot of 7, versus seismic moment; these are lines of
“self-similarity” of efficiency (Fig. 3). In the remainder of
this article, we examine 7, from 7, and Az, determined in
previously published studies. We consider these data in the
context of equation (3) without account of possible mea-
surement or analysis errors associated with the data. For the
Cajon Pass earthquakes, 7, calculated from 7, and Az, tab-
ulated by Abercrombie (1995) does not depend systemati-
cally on seismic moment and has a median value of 7, =
0.053, which is nearly four times lower than the median
value for laboratory measurements (e.g., 0.22, Lockner and
Okubo [1983]) (Fig. 3). Observations from mining-induced
earthquakes (McGarr, 1991) are consistent with the lab data
(McGarr, 1994) (Fig. 3). The difference between the lab and
Cajon 7, can only be accounted for if the Cajon earthquakes
have higher overshoot (relatively high dynamic strength)
than the lab observations.

Kanamori and Heaton (2000) argued that the largest
earthquakes in the Kanamori er al. (1993) data set show
evidence of decreasing dynamic fault strength (dynamic
weakening) with increasing seismic moment because the
largest earthquakes have the highest apparent stress. Under
these circumstances, if the static stress drop were constant,
increasing apparent stress would correspond to decreasing
overshoot. Unfortunately, the Savage—Wood efficiency for
the complete Kanamori et al. (1993) data set cannot be es-
timated from their published information, and we are only
able to plot a few of their larger earthquakes in Figure 3;
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Figure 3.  The Savage-Wood efficiency 7, = 1,/

At versus seismic moment for three seismological
data sets and one set of lab observations. The open
symbols are data from earthquakes recorded at 2.5 km
depth at Cajon Pass (Abercrombie, 1995). The stress
drop and apparent stress used in determining 7, are
inferred by spectral modeling of the observations;
these are model 2 of Abercrombie (1995). Also shown
are earthquakes in southern California from the study
of Kanamori et al. (1993) (solid squares). The appar-
ent stresses from this data set are the ratio E;/M, from
table 2 in Kanamori et al. (1993), assuming a shear
modulus of 30,000 MPa. The corresponding static
stress drops of Kanamori et al. (1993) were estimated
using pulse width 74 data from table 3 of Kanamori et
al. (1993) and the relation of Cohn et al. (1982), Az,
(bar) = M, (dyne cm) [5.69 X 10_8/td (sec)] (see
also figure 9 of Kanamori et al. [1993]). Tabulated
data from mining induced earthquakes (McGarr,
1994) (solid triangles) and from laboratory stress
drops (solid circles) (Lockner and Okubo, 1983) are
shown for comparison. The dashed line, which cor-
responds to equation (2) with zero overshoot &, sepa-
rates & < 0 (undershoot) from & > 0 (overshoot).

still, values of 7, similar to the Cajon data are found for
these large earthquakes (Fig. 3). Based on these few points
from Kanamori ef al. (1993) and our analysis of the Cajon
earthquakes, we find no evidence for systematic decreases
in dynamic strength causing increasing apparent stress with
seismic moment. This is well illustrated by a plot of apparent
stress versus static stress drop (Fig. 4). Here, with reference
to equation (1c), lines of constant overshoot have slope of
1. A fit to the Cajon Pass data shows a slope lower than 1,
corresponding to increasing overshoot (an increase in rela-
tive dynamic strength). In summary, we conclude that the
trend of increasing apparent stress with seismic moment in
this particular Cajon Pass data set is not consistent with the
largest earthquakes having excess radiated energy. Instead,
at least compared to laboratory and mining observations, the
Cajon Pass earthquakes have low efficiency and high over-
shoot.
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Figure 4.  Apparent stress versus static stress drop
for three seismological data sets and one set of lab
observations. Symbols are as in Figure 3. Contours of
constant overshoot have a slope of 1 on this plot (see
equation Ic); the contours shown correspond to the
labeled values of overshoot. The solid line is a fit to
the Cajon Pass data of Abercrombie (1995) (open
symbols), with a slope of 0.63.

Because 7, is essentially independent of seismic mo-
ment (Fig. 3) and apparent stress increases with seismic mo-
ment (Fig. 1), static stress drop co-varies with apparent stress
for the Cajon earthquakes (Fig. 4). This relationship, clearly
noted by Abercrombie (1995) (see her figure 12), is some-
what weaker than expected were overshoot constant (equa-
tion lc), but not dramatically so. Our interpretation of the
data is that the variation of apparent stress with moment
results from systematic variation of stress drop with event
size and that there is a weak increase in overshoot with mo-
ment. According to this interpretation, the data are not con-
sistent with dramatic changes in source physics with event
size. Based on the energy balance derived proportionality
between stress drop and apparent stress (equation 1c¢) and
the many source models that are consistent with this pro-
portionality (e.g., Hanks and Thatcher, 1972), we suggest
that systematic, orders-of-magnitude variation of apparent
stress with event size in observational data sets, whether real
or artifact, result largely from similar variations of stress
drop with event size.

Discussion

The apparent stress is the displacement-averaged value
of the radiated resistance ty; for example, in simple models
(Rice, 1993) the dynamic value of radiated resistance is
R(0) = xV(J), where Vis slip velocity and y is half the ratio
of the shear modulus to the shear-wave speed. In general,
the apparent stress is proportional to the spatially and
displacement-averaged slip velocity (McGarr and Fletcher,
2001, 2002). The small values of 7, for earthquakes in the
observational studies (Fig. 3) imply slip velocities that are
proportionately smaller than for lab and mining-induced
earthquakes of equivalent size; similarly, the observed low
values of 7, imply lower rupture velocity and longer event
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duration. We view these implied low values of slip velocity
as an expected consequence of low efficiency, but, as our
analysis does not consider rupture dynamics, we cannot
comment quantitatively on expected relationships between
apparent stress, shear fracture energy, slip velocity, and rup-
ture velocity.

Estimates of the Savage—Wood efficiency may have sig-
nificant uncertainties because estimated static stress drop is
model dependent (McGarr, 1994) and estimates of apparent
stress are subject to errors from attenuation and bandwidth
limitations (e.g., Ide and Beroza, 2001; Ide et al., 2002).
Note also that we have used data from previously published
studies, have assumed that these data are accurate, and have
not considered the formal uncertainties associated with the
data. If these data are in error, as Ide and Beroza (2001) have
suggested for the smallest events in the Abercrombie (1995)
data set, or uncertain, those errors and uncertainites are in-
herent in our data analysis. However, reliable estimates of
7sw May allow interpretable constraints to be placed on dy-
namic fault strength. For laboratory and small induced earth-
quake observations of stress drop (Wong, 1986; McGarr,
1994, 1999), fault strength is in accord with Byerlee’s law
(Byerlee, 1978), overshoot is positive and in the range & =
0.2-0.3 (McGarr, 1994, 1999), and typically 7., < 0.30.
This case is schematically depicted in Figure 2a. In contrast,
for dynamic weakening in excess of that seen in the lab,
more energy would be radiated relative to the sum of energy
dissipated by friction and that stored in fracture energy, for
example, as shown in Figure 2b. In instances of pronounced
dynamic weakening, the shear resistance could drop dra-
matically during stress drop; if the dynamic stress drop ex-
ceeds the static stress drop, then & < 0 (undershoot) (Fig.
2¢). In the most extreme case of dynamic weakening, for
example, due to pore fluid pressurization or frictional melt-
ing, the shear resistance falls to zero, all the energy is radi-
ated,n = 1, 5., = 7¢/A7,, and the Savage-Wood efficiency
could easily exceed 1. We suggest that evidence of dynamic
weakening might be inferred simply from 7,,, exceeding lab-
like values that result at dry conditions where thermal pres-
surization of pore fluids is impossible and where fault dis-
placements and fault normal stress are far too small to lead
to shear melting. Using the criterion 7, > 0.3, there is no
clear evidence for dynamic weakening in excess of that seen
in the lab in any of the data sets we examined (Fig. 3).

Fracture Energy, Fracture Stress, and Efficiency

Experimental evidence shows that a slip-weakening
relation well describes changes of strength during fracture
of intact rock and changes in strength during seismic
earthquakes on preexisting faults (e.g., Wong, 1986). Slip-
weakening fault strength has a well-defined effective shear
fracture energy, and for fracture-mechanics-based models of
earthquake rupture, this fracture energy in part determines
the speed of rupture propagation (see summary in Kostrov
and Das, 1988) and thereby influences the radiated energy
(e.g., Madariaga, 1976; Boatwright, 1980). Therefore it is
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useful to reconsider the energy balance (equation 1a) and the
efficiency for a slip-weakening fault, keeping in mind that
conclusions drawn from the following analysis are model
dependent. We assume fault strength at the onset of dynamic
slip drops from the peak strength 7, with displacement over
a characteristic distance d* and remains constant with sub-
sequent slip (Ida, 1972; Palmer and Rice, 1973) (Fig. 2).
With this slip-weakening relationship, the residual shear
strength is 7;, defining an effective shear fracture energy
associated with the strength loss G, = (T, — tp)d. The frac-
ture stress, the stress measure of effective shear fracture en-
ergy, is 7, = Ty — 7y = G./d. Thus for this general slip
weakening, equation (1b) can be recast as

T =1+ 17 + 1, (4a)

Solving equation (4a) for the apparent stress in terms of the
static stress drop Art,, the fracture stress, and overshoot
& = (¢ — To)/Aty, We find

17, = At, (0.5 — &)— 1. (4b)

Note that overshoot as used in equation (4b) is bounded
(&« < 0.5) and that this measure of overshoot is defined with
respect to 7y, similar to the approach commonly used in crack
models (e.g., Madariaga, 1976). In contrast, ¢ is defined with
respect to 7; to equate these two measures of overshoot, we
have ¢ = &. + t./At,. A relation for 7, follows from
normalizing equation (4b) by the static stress drop

Nsw = 0.5 — é‘ = Ny (40)

where 57, = 7./Atis the “fracture efficiency”, one-half the
percentage of energy associated with the static stress drop
that is dissipated by fracture and friction during the strength
drop. Thus, for slip weakening (equation 4c), the known
Savage—Wood efficiency must be balanced by contributions
due to the residual dynamic strength (&.) and the shear frac-
ture energy (7, ).

Previously, relationships between radiated and fracture
energy have been addressed using the radiation efficiency
nr, originally defined by Husseni and Randall (1976) and
Husseni (1977) (also see Randall, 1972). The radiation ef-
ficiency #y, is the ratio of radiated to available energy. Recent
analyses relating radiation efficiency to radiated and fracture
energy (Venkataraman and Kanamori, 2002) and recent gen-
eral analysis of fracture energy (Abercrombie and Rice,
2001) repeat an arbitrary assumption of Husseni (1977) and
Orowan (1960) that the static stress drop is equal to the dy-
namic stress drop, that is, no dynamic overshoot. For this
special case there is a simple relation between efficiency and
the radiated and fracture energies; the energy associated with
the static stress drop At,M,/(2u) is exactly partitioned be-
tween radiated and fracture energy and the radiation effi-
ciency is #g = Eg/(Eg + G.,A) = 2t1,/At, (Venkataraman
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and Kanamori, 2002). However, if instead overshoot is non-
zero, then Eq/(Eq + G.A) # 2t,/A7,. So that radiation ef-
ficiency is unambiguously defined in cases of non-zero over-
shoot, we propose that # be generally defined as the ratio
of radiated energy to energy associated with the stress
drop g = 2t,/Az,. Thus, radiation efficiency is twice the
Savage—Wood efficiency.

A number of previous theoretical and observational
studies (e.g., Madariaga, 1976; McGarr, 1999; Ide, 2002)
suggest that overshoot is nonzero and we are not certain that
the sign and magnitude of overshoot are constant with mo-
ment. Therefore, in the following we consider efficiency,
fracture energy and radiated energy of earthquakes for the
general case represented by equation (4c).

If interpreted using the slip-weakening fault strength,
the difference between the lab and Cajon Pass 7, (Fig. 3)
can only be accounted for if the Cajon earthquakes have
some combination of higher overshoot (relatively high dy-
namic strength) and higher fracture efficiency than the lab
observations. For example, in reference to equation (4c), if
& = 0, then the Cajon pass earthquakes would have an
extremely high median fracture efficiency n,, = 0.45, cor-
responding to 90% of the energy associated with the stress
drop. To our knowledge, there is no experimental or theo-
retical evidence to support values of fracture efficiency any-
where near this high for seismic earthquakes. In the case of
laboratory observations, fracture energy is observed to be a
small fraction of the energy associated with stress drop (e.g.,
Okubo and Dieterich, 1984). For earthquakes, usually the
contribution of fracture energy to the earthquake energy bud-
get is assumed to be very small, and quite often fracture
energy is ignored entirely (e.g., Kanamori and Heaton,
2000). Still, the relative size of fracture energy for earth-
quakes could be large; recent estimates from dynamic mod-
eling produce fracture energy that is 60% of the energy as-
sociated with the stress drop (7., = 0.30) (Favreau and
Archeluta, 2002), and the size of the fracture efficiency for
earthquakes remains an open question.

On the other hand, the maximum possible overshoot is
&« = 0.5; if the fracture efficiency is assumed to be zero,
then the Cajon Pass earthquakes would have nearly complete
overshoot, &« = 0.45. We are aware of no experimental,
theoretical, or observational evidence that supports over-
shoot this high. For example, dynamic fracture models typ-
ically have &« =~ 0.1-0.2 (e.g., Kostrov and Das, 1988); the
slider block calculations of Beeler (2001) show that even if
the fracture stress is zero, overshoot will not greatly exceed
that in laboratory observations, where typically &« ~ 0.27
(McGarr, 1994). From these considerations, we expect that
these Cajon Pass earthquakes have some combination of
positive overshoot and large fracture efficiency relative to
lab observations. Although fracture efficiency and &. are not
distinguished by our analysis, their sum for the Cajon earth-
quakes is ~0.45. Because at 0.053 the Savage—-Wood effi-
ciency is much lower than the sum of ¢. and 7, , likely for
these earthquakes the fracture efficiency is of the same mag-
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nitude as the Savage-Wood efficiency, in which case frac-
ture energy is of the same magnitude as radiated energy.

Conclusions

For earthquakes recorded in the Cajon Pass borehole
(M <3) (Abercrombie, 1995), apparent stress increases with
moment, but the Savage-Wood efficiency 7, = 7,/At, is
approximately constant and roughly four times smaller than
seen in lab data. Thus, these earthquakes have low and ap-
proximately scale-independent efficiency. Variations in ap-
parent stress with seismic moment for these earthquakes re-
sult primarily from systematic variations in static stress drop
with seismic moment and do not require increases in severity
of dynamic weakening with moment. Likely, overshoot is
positive and the fracture energy is not negligible. We suggest
comparison of field and lab determinations of the Savage—
Wood efficiency as a test for dynamic weakening in excess
of that seen in laboratory experiments.
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