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Abstract—A laboratory-derived crack growth-based constitutive relation for brittle faulting is

developed. The relation consists of two rheologic components, a nonlinear Arrhenius dependence of strain

rate on temperature and stress, corresponding to subcritical crack growth, and a linear slip-weakening

behavior associated with dilatancy, crack coalescence and supercritical crack growth. The implications of

this general behavior for the onset of rapid slip- (earthquake nucleation) are considered. Laboratory

observations of static fatigue and time- dependent failure from rock fracture and rock friction experiments

are consistent with this simple constitutive description, as are the predictions of rate- and state- dependent

equations for the onset of rapid frictional slip between bare rock surfaces. I argue that crack growth is the

physical process that controls time-dependent rock fracture and the time-dependent onset of unstable

frictional sliding. Some similar and related arguments made in the past 1/2 century in the fields of rock

mechanics and earthquake seismology are reviewed. For stressing rates appropriate for the San Andreas

fault system, the simple constitutive relation with lab-derived constants predicts a minimum time for

nucleation of ~ 1 yr. General predictions are a minimum nucleation patch radius of 0.06 to 0.2 m, and a

minimum earthquake moment of 8.5 · 107 Nm.

Key words: Earthquake nucleation, static fatique, delayed failure, rate- and state-dependent friction.

1. Introduction

It has been nearly 40 years since BRACE and BYERLEE [1966] noted the similarity

between repeating earthquake cycles and stick-slip sliding between bare surfaces of

rock. In the intervening years earthquake research in rock fracture and rock friction

has proceeded assuming that the onset of dynamic stress drop during laboratory rock

failure or during frictional stick-slip experiments and the onset of earthquakes are

controlled by the same underlying physical processes. Many significant advances have

been made in rock friction, e.g., conditions where a fault responds unstably to changes

in stress (e.g., DIETERICH, 1978; TULLIS and WEEKS, 1986), rate- and state- dependent

constitutive relations to describe the lab observations (DIETERICH, 1979; RUINA, 1983;

RICE and RUINA, 1983), and the mechanical conditions for frictional instability (RICE

and RUINA, 1983; GU et al., 1984). However, a significant limitation to laboratory-
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based relations, particularly rate and state equations which well describe rock friction

under laboratory conditions, is that their exact physical basis is unclear. So long as

particular laboratory-observed effects are empirical, i.e., not clearly attributed to

thermally activated processes, it is difficult to extrapolate the observations in pressure

and temperature to conditions other than those of the particular experiments,

establish the dependence of the effects on environmental factors such as the presence

of fluids and fluid chemistry, or to determine how the specific effects compare with

others which might compete at significant depth in the earth.

This paper attempts to combine the essential experimental observations from

brittle rock deformation into simple physically-based constitutive equations for

earthquake nucleation. I argue that laboratory observations of rock fracture and rock

friction relevant to earthquake occurrence and earthquake nucleation result from

subcritical and supercritical crack growth, as has been suggested many times for

failure of intact rock, probably first by SCHOLZ (1968b). A qualitative two-component

constitutive description for rock fracture which results from considering the physics of

crack growth is the same form as proposed by DIETERICH (1992, 1994) as a

simplification of rate and state equations appropriate for describing the onset of rapid

frictional slip between bare rock surfaces. Thus, I argue that crack growth underlies

the rheology of unstable frictional slip between rock surfaces and the rheology of rock

fracture. In the context of earthquake nucleation, considering frictional instability

and rock failure as both resulting from crack growth is conceptually appealing

because fractured rock and highly comminuted wear product are the most obvious of

byproducts of brittle rock deformation. The equations resulting from the analysis

presented herein, consistent with other recent process-based models of rock friction

(LAPUSTA et al., 2000; NAKATANI, 2001, RICE et al., 2001), make specific predictions

for the expected size and form of the temperature dependence of rheological

parameters associated with earthquake nucleation, and might be used to predict how

these effects will change with experimental configuration, the presence of fluids, and

fluid chemistry. Using the simple constitutive equations and laboratory-derived model

parameters I summarize new and review previously published predictions for

earthquake occurrence and earthquake scale, in particular the duration of nucleation,

nucleation zone size, and minimum earthquake size.

2. Simple Description of Brittle Deformation

To model the onset of rapid slip at low temperature I assume that all inelastic

deformation requires cooperative slip and crack growth within a localized zone. Slip

may occur between asperities on opposite sides of a fault, between particles in a fault

gouge, or on previously fractured surfaces. Regions which are fractured by crack

growth during deformation may be regions of intact rock in front of a propagating

rupture (LOCKNER et al., 1991), interlocking asperities on preexisting fault surfaces

1854 N. M. Beeler Pure appl. geophys.,



(DIETERICH and KILGORE, 1994), or particles which form grain bridges in gouge

layers (e.g., SAMMIS and STEACY, 1994). To characterize the net shear resistance at

constant deformation rate I use an approach similar to that of MOGI (1962) and

SAVAGE et al. (1996) where the shear resistance is

s0 ¼ sf
Af

A
þ si

Ai

A
: ð1Þ

Here sf is the shear resistance to slip, si is the shear stress necessary to break the

unfractured material, A is the initial contacting area per unit mass of the deforming

zone, and Af and Ai are the area per unit mass of the slipping (fractured) region and

the cross-sectional area per unit mass of the unfractured portions of the fault zone,

respectively. Taking A ¼ Af þ Ai, assume that the intrinsic resistance to slip is smaller

than the resistance to crack growth, sf < si and that A is constant. During failure,

weakening with progressive slip d results from the increase of Af at the expense of Ai.

For example, for the propagation of a single circular crack, the cracked area

increases as Af / d2. So in general the fault zones of interest are unable to sustain

large shear strain without loss of strength, consistent with general definitions of

brittle behavior. Here for simplicity, assume that crack area increases linearly with

slip Af ¼ Cd, where C is a constant with dimensions of length per unit mass. Using

the definitions Ds ¼ si � sf and d� ¼ A=C, equation (1) becomes

s0 ¼ si � Ds
d
d�
: ð2Þ

This relationship (Fig. 1a) is consistent with laboratory observations of gradual slip-

weakening during failure of intact rock (e.g., WONG, 1986) and stick-slip friction

(e.g., OKUBO and DIETERICH, 1981; 1984) (Fig. 1b). Equation (2) is the slip-

weakening form previously shown to be a useful general description of quasi-static

and dynamic material failure (PALMER and RICE, 1973; IDA, 1972) that has been used

extensively in cohesive zone models of shear fault propagation in the geophysical

literature.

In previous implementations of slip-weakening the characteristic length d�
describes a gradual loss of material cohesion as in (2). However in many previous

applications to earthquake mechanics, slip-weakening is used to model dynamic

rupture propagation, that is, only super-critical behavior. In such applications the

characteristic length has additional significance, principally, d� is a model represen-

tation, related to the dimension of the region of yielding (the process zone)

surrounding the tip of the propagating rupture. The size of the region surrounding

the tip in which the stress is high enough to cause yielding increases with crack length

or distance of propagation, implying that the process zone increases with the distance

of crack propagation (ANDREWS, 1976). Thus, in models of large scale rupture

propagation in the earth, the characteristic length should increase with displacement

(ANDREWS, 1976). However, in this paper I am interested in the very small
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Figure 1

Slip-weakening relationship for fault strength drop. a) Idealized linear relationship after IDA (1972) and

PALMER and RICE (1973). Strength drops from a peak (yield) sy to a residual level sf over a characteristic

displacement d*. The energy per unit area expended in dropping the strength Ge = (sy – sf)d*/2, the
effective shear fracture energy (shaded), can be equivalently expressed as Ge ¼ ð�sk � sf Þd, where d is the

total displacement and �sk is the displacement averaged fault strength. In this example, the initial

displacement rate of strength drop (solid line), the slip-weakening rate ðsy � sf Þ=d�, is greater than the rate

of stress drop (heavy dashed line) k ¼ ds=dd defining the conditions necessary for unstable, rapid slip. b)

Laboratory observation of slip-weakening of a granite fault surface during dynamic strength drop at

3.45 MPa normal stress (OKUBO and DIETERICH, 1984).
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displacements associated with earthquake nucleation; with reference to Figure 1,

these displacements d < d� are the pre-peak and immediately post-peak displace-

ments associated with the onset of rapid slip. Initially, I assume that d� in the

qualitative model (2) is constant. Later, in section 4.3 I consider implications of

variable d* for nucleation.

2.1 Slow Crack Growth

In brittle materials the resistance to crack growth depends positively on the growth

rate while the growth rate is low. Figure 2 shows examples of this ‘subcritical’

behavior, rate data from single cracks propagating in selected quartzofeldspathic

materials - fused silica glass (LAWN, 1993), synthetic quartz, and Westerly Granite

(ATKINSON and MEREDITH, 1987). In Figure 2 the horizontal axis is crack

propagation velocity and the vertical axis is the stress intensity KI ; stress intensity

is related to the remotely applied driving stress rr and to the crack length c as.

KI / rr
ffiffiffi

c
p

. Thus, as shown in Figure 2, subcritical fracture growth has a nonlinear

viscous rheology; as the stress on the sample increases crack velocity increases, or

alternatively, as the crack propagation velocity increases, the crack strength

increases. Subcritical crack growth in minerals is generally similar to that in glass

and at comparable temperature crystalline materials (quartz) are often somewhat

stronger than their amorphous counterpart (fused silica). Note finally that there is a

measurable temperature dependence to crack growth, indicating that a thermally

activated mechanism controls growth. Arguably, subcritical crack growth occurs in

all instances of natural faulting and in laboratory rock fracture and friction

experiments as indicated by damage such as pervasive micro-cracks, macroscopic

fracture, and wear material (gouge).

For well-studied minerals and for other brittle materials it is generally accepted

that subcritical crack propagation rate is determined by the rate of chemical reaction

at the crack tip, i.e., the rate at which bonds are broken at the tip (e.g., CHARLES and

HILLIG, 1962; ATKINSON and MEREDITH, 1987). Descriptions of the chemical

reaction rate v have the form

v ¼ v0 exp
�E þ Xrt � XmC=q

RT

� �

: ð3Þ

(CHARLES and HILLIG, 1962) where E is the stress free activation energy, X is the

activation volume, Xm is molar volume, C is the interfacial energy, R is the gas

constant (8.3144 J/mol K) and q is the radius of curvature at the crack tip. Note that

as v increases, the crack tip strength rt increases. Using the substitutions

DQ ¼ E þ XmC=q and r0 ¼ DQ=X (3) can be written

v ¼ vo exp
�DQð1� rt=r0Þ

RT
: ð4Þ
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Assume the rate of crack propagation is proportional to the reaction rate in (4). I

further expect that the propagation velocity of a single crack, or the average

propagation velocity of cracks within a localized fault zone to be proportional to the

shear deformation rate across the fault zone so that V ¼ av. Finally, assume that the

remotely applied shear- stress driving crack propagation s, equivalently macroscopic

shear resistance of regions to fracture, reflects the intrinsic strength of the subcritical

cracks within the region, rt ¼ js. Here, j is like a dimensionless stress intensity

factor that depends on the geometry. However, unlike stress intensity, for simplicity I

have arbitrarily assumed that j is constant and does not depend on crack dimension,

consistent with the crack growth experiments. After combining all of these

assumptions the deformation rate is

V ¼ V0 exp
�DQð1� sj=r0Þ

RT
ð5aÞ

Figure 2

Subcritical crack growth in quartzofeldspathic materials. Crack stress intensity KI versus velocity for fused

silica glass (Lawn, 1993), synthetic quartz (ATKINSON and MEREDITH, 1987), and Westerly granite

(ATKINSON and MEREDITH, 1987). The stress intensity is proportional to the remotely applied stress; thus

the vertical axis reflects the driving stress for subcritical crack extension. Also shown is a fit to the granite

data using KI ¼ K0 þ ðdKI=d lnV Þ ln V, with dKI=d ln V ¼ 0:041 MPa m1/2.

1858 N. M. Beeler Pure appl. geophys.,



where V� ¼ v0=a. Rearranging (5a) with V as the independent variable and using the

substitutions s0 ¼ r0=j and f ¼ RT r0=DQj yields

s ¼ s0 þ fln
V
V�
: ð5bÞ

Note that the resulting equation (5b) has the same form of stress dependence as the

experimentally measured subcritical crack growth data (Fig. 2); stress depends

logarithmically on the deformation rate with a coefficient f that is related to

temperature and the thermal activation energy (also see, LAPUSTA et al., 2000;

NAKATANI, 2001; RICE et al., 2001).

2.2 Simple Failure Equation

Combining the rate-independent relation for brittle deformation (2) with the

accounting of the rate dependence of crack growth (5b) leads to a slip and slip rate

dependent formulation

s ¼ si þ fln
V
V�
� Ds

d
d�
: ð6aÞ

Observations from studies of rock friction (e.g., DIETERICH, 1981; TULLIS and

WEEKS, 1986; BLANPIED et al., 1998) and failure of intact rock (SCHOLZ, 1968a, b;

LOCKNER, 1998), over a wide range of deformation rates are generally consistent with

(6b); rock shear resistance at low temperature, low strain, and low strain rate

depends weakly and logarithmically on the rate of inelastic deformation. Normal-

izing by normal stress yields a relation for friction, l ¼ s=rn,

l ¼ l� þ a ln
V
V�
� Dsd

rnd�
: ð6bÞ

Equation (6b) is the same form as a simplification, appropriate for representing the

onset of rapid slip, suggested by DIETERICH (1992; 1994), of a particular rate and

state variable constitutive equation widely used in studies of rock friction and

earthquake mechanics (RUINA, 1983; LINKER and DIETERICH, 1992). Equivalence

with (6a) requires a ¼ f=rn and l� ¼ si=rn.

2.3 Expected Values of Coefficients

According to equation (6), strength during loading to brittle failure depends only

on slip rate and slip. Expected values from laboratory experiments for the two

coefficents a and, Ds=rnd� which control the respective dependencies, are listed in

Table 1. Both friction and intact failure tests yield values of a ranging 0.003 to 0.009

for granite at low temperature. Agreement between a for friction and intact rock was

found by TULLIS and WEEKS (1987) for carbonate rocks. In the case of granite, this

similarity lead LOCKNER (1998) to suggest that subcritical crack growth is the
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mechanism underlying this effect in both friction and rock failure of granite. While

the rate dependence of shear strength from subcritical crack growth experiments in

granite dKI=d ln V ¼ 0.041 MPa m1/2 (Fig. 2, Table 1, data from ATKINSON and

MEREDITH, (1987)) is available for comparison with friction tests at low normal

stress, there are many complications in interpretation. The conclusion from friction

and rock fracture tests is that a is a frictional quantity; that is, it does not depend on

normal stress, requiring that n in (6) scales with normal stress. While this normal

stress dependence of n is not included in the present qualitative model, it might be

incorporated following the approach of LOCKNER (1993). An additional difficulty is

that rate dependence inferred from ATKINSON and MEREDITH (1987) is crack length

dependent and crack length is ignored in our treatment. At present no method of

comparison between friction experiments and crack growth data has been

established. A third difficulty is that dKI /d ln V inferred from ATKINSON and

MEREDITH (1987) applies to mode I (tensile) crack propagation; at high confining

pressure appropriate for crustal shear faulting, shear and mixed mode crack

propagation is expected and such subcritical crack growth measurements are not

available. A final problem is that there are four regions of subcritical fracture growth,

all with different rate dependence. The existing data for mode I in rocks and minerals

correspond primarily to region 1 (ATKINSON and MEREDITH, 1987); it is unclear

whether these are the appropriate data to compare to rock friction and rock failure

tests. Given these unknowns, in the remainder of this study equation (6) is used with

an empirically determined value of a ¼ 0.008 appropriate for both granite friction

and failure of intact granite (Table 1).

To infer values of the slip-weakening coefficient I use the slip-weakening strength

drop (Fig. 1) from failure experiments on granite summarized by WONG (1986) and

from granite stick-slip experiments of OKUBO and DIETERICH (1981). The slip-

weakening component of (6b) can be equated with the dynamic strength drop from

the experimental measurements, Ds ¼ ðsy � sf Þ (Fig. 1). In both cases I estimate the

effective dynamic strength drop from the measured shear fracture energy Ge and the

Table 1

Parameters for Granite

Rate dependence Ds=and� Reference

Friction n = 0.003rn to 0.009rn BLANPIED et al. (1998)

Friction 0.014 to 0.044/lm OKUBO and DIETERICH

(1984)

Fracture 0.096 · 10-3 to

0.21 · 10-3/lm
WONG (1986)

Fracture n = 0.007rn to 0.009rn

(20�C)
LOCKNER (1998)

Crack growth dKI/d ln V = 0.041 MPa

m1/2 (20�C)
N/A ATKINSON and MEREDITH

(1987)
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characteristic slip-weakening distance d* according to ðsy � sf Þ ¼ 2Ge=d� Knowing

the strength drop, normal stress and slip-weakening distance specifies the displace-

ment rate of slip-weakening ðsy � sf Þ=rnd�. If d* scales with A, the initial contact area

per unit mass within the fault zone, then the slip- weakening coefficient Ds=rnd�
should be very different for intact failure tests and friction. As friction involves areas

of asperity contact which are typically a few percent or less of the total fault area, and

intact failure involves fracture of the entire fault, d* is expected to be two to three

orders of magnitude larger for intact rock failure. Thus, excepting differences in stress

drop Ds, the slip- weakening component Ds=rnd� should be about two to three orders

of magnitude larger for friction than it is for intact failure. This is consistent with the

observations (Table 1); the representative displacement rate of slip-weakening for

fault slip in terms of friction is 0.029/lm whereas for rock fracture it is 0.00015/lm.

However, Ds and d* are probably coupled. For rock fracture the ‘‘fault’’ initially

is as strong as the surroundings, having the strength of intact rock. On the other

extreme, simulated laboratory faults are weak with respect to the surrounding rock

and are cohesionless and artificially flat except at small wavelengths. Thus the

strength drop for rock fracture should exceed that for friction. Similarly, the amount

of strain necessary to weaken intact rock exceeds that necessary to break asperities

on a laboratory fault surface. Natural seismic faults should have roughness much

greater than in laboratory friction experiments (POWER et al., 1987), and have non-

zero cohesion less than that of intact rock. Considering the displacement rate of slip-

weakening from laboratory friction and laboratory rock fracture experiments as end

members, I use a value intermediate between the two different types of laboratory

tests, Ds=d�rn = 0.002 to 0.003/lm in applying laboratory results to model

earthquake nucleation and small earthquakes.

3. Physical Characteristics, Significance, Interpretation

If one allows that earthquake occurrence involves crack growth at some scale,

constitutive models for failure must involve two components, a ductile response at

small strains, represented in (6b) by the rate-dependent term a lnV/V*, and a brittle

response at large strain represented by the slip-weakening term �Dsd=rnd�, in (6b).

The implied behavior is easily illustrated; consider a fault loaded at a constant

displacement rate VL (Fig. 3a); for small values of slip, d << d�rn=Ds, the third term

on the right-hand side of (6b) is negligible and the second term dominates. That is, at

small inelastic strains the fault strength depends positively on deformation rate, and

the fault is ductile in the classic sense that strain can be accommodated without loss of

strength. The ductile component of (6b) l ¼ l� þ a ln V =V� characterizes temporal

variation of slip rate very well over most of the loading to failure (Fig. 3b). During this

time, labeled ductile in Figure 3c, the sliding velocity increases (Fig. 3b), and yet the

stress on the fault also increases (Figure 3a and 3c). As more strain accrues, the third
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term of (6b) becomes significant and leads to a deviation from a linear (elastic) increase

in shear stress s with time t (Figure 3a and 3c); shear stress on the fault is

s ¼ kðVLt � dÞ, where k is the stiffness of the surroundings. In this transition stage the

slip rate also deviates from the ductile curve (Figure 3b). Eventually the slip weakening

term in (6b) dominates, resulting in truly brittle behavior at large strains, and

subsequently rapid stress drop occurs. Figure 3d depicts a laboratory example of this

gradual onset of failure, loading of a granite fault at 50 MPa confining pressure at

VL =0.1 lm/s (BEELER and LOCKNER, 2003). Thus the crack-based model of faulting,

and the laboratory observations on which it is based, exhibit delayed failure— a lag

time between the onset of detectable slip, or the time of peak stress, and the time of

failure.

The ductile response represents the stable growth of subcritical cracks while the

eventual brittle response reflects critical and super-critical crack growth, the

coalescence of previously isolated cracks, dilatancy and the associated loss of

material cohesion. More sophisticated two-component models for rock fracture,

based on the same conceptual approach taken in the previous section, are common in

the international rock mechanics and fracture mechanics literature dating back at

least to the 1960s (e.g., ZHURKOV, 1965; ZHURKOV et al., 1977).

4. Implications for Time of Earthquake Occurrence

4.1 Static fatigue and delayed failure

As reflected in equation (6b) and in laboratory experiments, neither rock failure

nor frictional instability occur at a threshold stress. This is well illustrated by the

Figure 3

Characteristics of laboratory failure during loading at a constant rate. Parts a) – c) show the results of

simulations with equation (6b) where the fault is loaded elastically ds=dt ¼ kðV L � V ÞwithVL= 0.001lm/s,

stiffness k/rn = 0.000137/lm, l* = 0.7, a = 0.008, D s/rnd* = 0.0024 /lm, and initial velocity Vs = 1.0 x

10)10 lm/s at t = 0. a) Shear stress in the plane of the fault in the shear direction versus time. Shown are

the elastic loading ds/dt=kVL that would result if the fault did not slip (dashed), the ductile component of

the failure relation s/rn = l* + a ln V/V*(black) and the complete solution to (6b) (heavy black). The gray

box denotes the region shown in Figure 3c. b) Sliding velocity versus time for the calculation shown in

Figure 3a. The ductile component of the failure equation is shown for comparison (black). During most of

the loading time the fault behavior is well described by the ductile solution because the total displacement

is extremely small and the slip weakening term D sd/rnd* in (6b) is negligible. c) Blow up of gray box in

Figure 3a. The elastic loading (dashed) and ductile component of the failure relation are shown again for

comparison. Also shown are the approximate boundaries (dotted lines) between the ductile and brittle

regions of (6b). The onset of truly brittle behavior occurs at the peak stress when V = VL. An

approximation to the upper limit of truly ductile behavior is shown (see discussion in section 4.3). Over the

duration of time labeled transition, the fault shows mixed behavior; it strengthens as the sliding rate

increases but is weaker than the purely ductile component. d) Actual laboratory observation of the onset of

unstable sliding between surfaces of Westerly granite at 50 MPa confining pressure and VL = 0.1 lm/s

(BEELER and LOCKNER, 2003).

b
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laboratory observed phenomenon known in mechanical engineering, material

science, and rock mechanics as ‘static fatigue’ or ‘stress corrosion’—an inherent

time delay between the application of a stress increase and the occurrence of brittle

failure induced by the stress change (e.g., SCHOLZ, 1972; KRANZ, 1980). Here and

throughout I refer to changes in the fault shear stress s using the normalized

frictional stress l ¼ s=rn (6b). To consider static fatigue of (6b), take the temporal

derivative and equate it to zero. If stress is raised to a particular level ls at time t=0

and then held constant, the sliding rate evolves from the starting velocity Vs at t=0

according to

V ¼ Vsarnd�
arnd� � DstVs

ð7aÞ

where Vs ¼ V�expð½ls � l��=aÞ (Fig. 4a). The delay time td between the application of

the stress that induces failure and actual time of failure is

td ¼
arnd�
DsV�

expð½l� � ls�=aÞ ð7bÞ

The relationship between stress change and the delay time is such that the larger the

stress level, the sooner the induced failure event (Fig. 4b). Thus, if earthquake failure

is controlled by the same processes as in laboratory rock failure and frictional

instability experiments, the failure time of an earthquake triggered by a particular

stress change depends on the size of stress change and on how close the fault is to

failure prior to the stress change (proximity to failure). That rock failure time is

related to stress change in this general way has been known since GRIGGS (1936).

Figure 4c shows a laboratory example of the typical static fatigue behavior of rock,

rock fracture of granite at 53 MPa confining pressure (KRANZ, 1980).

As the relationship between stress change and failure time is nonlinear, when one

considers populations of faults with an initially random distribution of proximity to

failure, a stress change produces a seismicity rate due to triggered events that is

initially very high and decreases with time following the stress change. This is the

behavior seen in induced acoustic emissions, microseismicity, and Omori aftershock

sequences, as was noted by MOGI (1962), and subsequently by many researchers (e.g.,

Figure 4

Static fatigue characteristics. Parts a) and b) are simulations using equation (6b) with l* = 0.7, V* = 0.001

lm/s, a = 0.008, and Ds/rnd* = 0.0024 /lm. In a static fatigue test, the fault shear stress is raised from

zero to ls nearly instantaneously. In this simulation, the level of stress fixes the initial velocity Vs = V*

exp([ls–l*]/a). a) Slip velocity with time as given by equation (7a). Shown are three cases corresponding to

Dl = ls - l* = 0.03, 0.01 and -0.01. The higher the stress relative to the reference l*, the higher the initial
slip rate and the sooner failure occurs. b) The time of failure td versus the stress level for a series of

simulated static fatigue tests as specified by equation (7b). c) Actual experimental static fatigue data from

rock fracture of granite at 53 MPa confining pressure (KRANZ, 1980). Failure stress was converted to

friction assuming a 30� angle between the greatest principal stress and the incipient failure plane. Dl was

calculated using l at 104 s as the arbitrary reference l*.

c

1864 N. M. Beeler Pure appl. geophys.,



Vol. 161, 2004 Physical Basis of Laboratory-derived Relations 1865



SCHOLZ, 1968b; KNOPOFF, 1972; DAS and SCHOLZ, 1981; YAMASHITA and KNOPOFF,

1987; HIRATA, 1987; REUSCHLE, 1990; and MARCELLINI, 1995, 1997 among others).

Furthermore, many of these authors have developed fracture growth based models of

aftershocks; successful modeling of aftershocks, foreshocks and general seismicity

rate changes with (6b) by DIETERICH (1994) and DIETERICH et al. (2000) being a

recent, general and significant advance.

4.2 The Characteristic Time

Because the small strain behavior of equation (6b) is ductile, this equation

exhibits a characteristic time. Consider constant rate elastic loading of a fault where

the loading rate represents tectonic stressing ds=dt ¼ kðVL � V Þ: At small strain the

rate of stress change of equation (6b) is ds=dt � arndV =VdV : Combining these two

expressions and integrating yields

1

V
� 1

Vs
� 1

VL

� �

exp � _s
arn

t
� �

þ 1

VL
:

where Vs is the velocity at t = 0, and _s ¼ kVL Thus, slowness (V �1) is exponential

with a characteristic time tc ¼ arn=_s. This constant loading rate, characteristic time

figures prominently in applications of (6b) to earthquake nucleation and earthquake

occurrence as I summarize next.

4.3 The Duration of Nucleation

The simple failure equation (6b) has a number of analytical solutions for simple

stressing histories that are useful for analysis of earthquake occurrence, earthquake

rate, and precursory slip (DIETERICH, 1992, 1994; GOMBERG et al., 1998). For

predicting earthquake failure time under a constant rate of stressing _s due to plate

motion, time until failure depends only on the sliding velocity

ttf ¼
arn

_s
ln

_s
cV
þ 1

� �

: ð8aÞ

where c ¼ ðDs=d� � kÞ and k is the elastic stiffness (DIETERICH, 1994) (Fig. 5a).

During most of the loading, the fault slip velocity is small but as the stress rises slip

rate becomes significant. Similarly, the total accrued displacement prior to failure is

exceedingly small and only becomes appreciable near the time of failure

d ¼ � a
c

ln 1� cVs

_s
exp

_st
arn

� �

� 1

� �� �

: ð8bÞ

(DIETERICH, 1992, 1994; GOMBERG et al., 1998) where Vs is the velocity at t=0

(Fig. 5b). Whether or not the fault is slipping at an appreciable rate directly reflects

the expected tradeoffs between the two rheologic components of (6b). With reference

to Figure 5a, time between the change from steep to shallow slope and the failure
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time is marked by the time at which the full solution of (6b) deviates from the ductile

component of (6b). This time can be thought of as the duration of nucleation, the

time during which the fault is undergoing appreciable precursory slip. The duration

of nucleation is effectively independent of the slip-weakening component �Dsd=rnd�
of equation (6b), as is shown in constant loading rate calculations with Dsd=rnd�
varying over 4 orders of magnitude (Fig. 6). The nucleation time therefore is

controlled entirely by the ductile component of (6b) a ln V =V� and depends only on

a. Furthermore, the nucleation time is on the order of the characteristic time of

arn=_s:tn has been approximated as tn ¼ tc ¼ arn= _s by DIETERICH (1994) and as

tn ¼ 2ptc ¼ 2parn= _s by BEELER and LOCKNER (2003). These estimates of tn seem to

bound the actual value well (Figs. 5a and 6).

In addition to being the effective duration of nucleation, tn is the predicted

duration of Omori-like aftershock sequences for fault populations obeying (6b)

(DIETERICH, 1994). Why the duration of an aftershock sequence is related to the

nucleation time can be understood by noting that for constant loading rate tn is the

maximum possible delay between the onset of appreciable slip and the time of

failure (Fig. 5b). Therefore for faults that are initially closer to failure than tn, a

small stress change changes the sliding velocity and shortens the delay time by an

amount that depends on the initial time to failure. However for faults initially

much farther from failure than tn, a small stress change changes the sliding velocity

but will not shorten their delay time. As a result, the seismicity rate at times greater

than tn after a static stress change, is the same as the seismicity rate prior to the

stress change (DIETERICH, 1994). tn is also the expected period of time over which

earthquake occurrence rates should be insensitive to continuous small amplitude

stress changes such as the solid earth tides (BEELER and LOCKNER, 2003). That the

nucleation time determines whether earthquake occurrence is sensitive to tidal

stresses can be understood again by noting that tn is the maximum possible delay

time. For an increase in stress of a period considerably longer than tn, the

nucleation time is negligible in comparison to the period; under these circumstances

failure is effectively instantaneously triggered by the stress change, and there is a

strong correlation between stress change and failure time. At periods shorter than

tn, failure is delayed due to the damping term a ln V/V* and the correlation

between small stress changes and seismicity rate is very weak (KNOPOFF, 1964;

BEELER and LOCKNER, 2003).

To evaluate expected values of tn for the San Andreas fault system assume a

10 MPa stress drop and recurrence intervals between 30 and 100 years (appropriate

for large earthquake recurrence) ( _s ¼ 1.0 · 10)8 to 3.17 · 10)9 MPa/s), a depth

range of 5–15 km with rn = 18 MPa/km (appropriate for hydrostatic fluid pressure),

and an experimentally derived value of a=0.0045 (BEELER and LOCKNER, 2003)

(are=0.4–1.2 MPa). Using tn = tc the predicted duration is 1.2 to 12 years and for

tn = 2ptc the typical duration is 7.6 to 76 years. These values are consistent with some

aftershock sequence durations and the absence of obvious tidal triggering by the
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solid earth tides. However, though shorter aftershock sequences may be evidence of

low effective normal stress (super-hydrostatic pore pressure), smaller stress drops,

higher stressing rates, or smaller values of a, aftershock durations can be much less

Figure 5

Time to failure characteristics. Parts a) and b) are simulations using equation (6b) during loading at a

constant rate. The fault is loaded elastically ds=dt ¼ kðVL � V Þ with VL = 0.001lm/s, stiffness k/rn =

0.000137/lm, l* ¼ 0.7, a = 0.008, Ds=rnd� = 0.0024 /lm, and initial velocity Vs = 1.0 · 10)10 lm/s at

t = 0. a) Slip velocity versus time to failure. At high velocity, time to failure is inversely related to slip

velocity; this behavior characterizes the mixed and brittle behavior of (6b). At very low velocity, the

behavior is well described by the ductile component of (6b) _s=re = l*+a ln V/V* (black). The upper

boundary of ductile behavior is well approximated by the characteristic time tn = arn= _s (heavy dotted line

labeled tc). Another estimate of the limit of ductile behavior tn ¼ 2parn= _s is shown (dotted line). b)

Displacement versus time to failure for the same calculation as shown in a). c) Actual laboratory

observation of slip velocity versus time to failure for 5 successive slip events on a granite fault at 50 MPa

confining pressure and VL=0.1 lm/s (BEELER and LOCKNER, 2003], after DIETERICh and KILGORE [1996].

The solid line denotes a slope of )1, and the dashed line tn is an estimate of the duration of nucleation.

b

Figure 6

Time to failure characteristics of the simple brittle failure relation equation (6b) during loading at a

constant rate for different values of the characteristic length d*, as labeled. The fault (heavy curves) is

loaded elastically ds=dt ¼ kðVL � V Þ with VL ¼ 0.001 lm/s, stiffness k/rn ¼ 0.000137/lm, l* ¼ 0.7,

a ¼ 0.008 and initial velocity Vs = 1.0 · 10)10 lm/s at t ¼ 0. Various values of the ratio Ds=rnd� are

used. The curve labeled d* ¼ 5 lm corresponds to Ds=rnd� ¼0.0024lm. Also shown is the ductile

component of (6b) s=rn ¼ l�þa InV/V*. For a particular value of d*, the intersection of the heavy black

and black curves is the duration of nucleation; the 4 sets of curves show that the duration of nucleation is

essentially independent of d*. Also shown are the two estimates of nucleation duration, the characteristic

time tc ¼ arn= _s and 2parn= _s.
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than 12 to 76 years and some are on the order of weeks or months. Further analysis

with (6b) of aftershock sequences and of reported correlation between stress changes

due to oceanic tides and earthquake occurrence (e.g., WILCOCK, 2001) may provide

constraints on tn that are not available from existing laboratory experiments.

5. Implications for Earthquake Size

On a planar fault loaded at a constant rate, slip with the fault strength (6b) can be

inherently unstable to perturbations in slip or slip velocity. Some spatial aspects of

the behavior can be illustrated with static calculations, principally, the expected

spatial size of a nucleating earthquake. Consider an arbitrary distribution of slip on a

planar fault in plane strain. The spatial distribution of shear stress s(x) due to slip

d(x) is

sðxÞ ¼ G
2pð1� vÞ

Z 1

�1

�dd=dxðx0Þ
x� x0

dx0 ð9Þ

(WEERTMAN, 1979). The temporal derivative of (9)

dsðxÞ
dt
¼ G

2pð1� vÞ
d
dt

Z 1

�1

�dd=dxðx0Þ
x� x0

dx0
� �

ð10aÞ

can be evaluated using Leibniz’s Rule to find

dsðxÞ
dt
¼ G

2pð1� vÞ

Z 1

�1

�dðdd=dxðx0ÞÞ
dt

x� x0
dx0 ð10bÞ

Noting that, dðdd=dxÞ=dt ¼ dðdd=dtÞ=dx, (10b) can be expressed as

dsðxÞ
dt
¼ G

2pð1� vÞ

Z 1

�1

�dV =dxðx0Þ
x� x0

dx0 ð10cÞ

Now consider a single wavelength perturbation above a uniform sliding speed Vo,

V ðxÞ ¼ V0ð1� A cos xxÞ where the wavelength is 2 p=x The spatial derivative of

velocity is dV =dxðxÞ ¼ V0 xA sin xx and so long as there is only a single perturbation,

the upper and lower integration limits of (10c) can be replaced by 2p and 0,

respectively,

dsðxÞ
dt
¼ G

2pð1� vÞ

Z 2p

0

�V0xA sinxx0

x� x0
dx0 ð11aÞ

The temporal derivative of (6b) can be rearranged to give

dV
dt
ðxÞ ¼ V ðxÞ

a
1

rn

ds
dt
ðxÞ þ DsV ðxÞ

rnd�

� �

ð11bÞ
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When (11a) is substituted into (11b), equation (11b) gives the spatial distribution of

instantaneous slip acceleration of the perturbed fault patch, a measure of the growth

rate. To determine the characteristic wavelength the procedure is to consider the

growth rate of patches of different wavelength. Figure 7 shows that the spatial

distribution of growth rate depends on the wavelength with the most uniform growth

rate associated with a half wavelength ðlc ¼ k=2Þlc ¼ Gd�=Ds (heavy solid line,

Fig. 7). For this choice of parameters (see figure caption) lc ¼ 0.5 m. This particular

wavelength should grow and maintain approximately constant shape whereas larger

and smaller patches will either spread to larger or shrink to smaller wavelengths.

Thus, earthquake nucleation on faults with (6b) should show a dominant nucleation

patch size lc. Time dependent calculations by DIETERICH (1992) using the same

geometry as employed here show similar behavior. DIETERICH finds that during

nucleation, patches with half-length greater than lc shrink to lc as slip accelerates, and

slip perturbations of smaller wavelength tend to become smooth and coalesce to

longer wavelength patches. However, in time-dependent calculations lc is somewhat

larger than inferred from static analysis; DIETERICH (1992) reports lc ¼ 1.7Gd*/Ds as

the patch approaches dynamic slip speeds.

Figure 7

The spatial distribution of instantaneous slip acceleration on patches of a planar fault. Patches with a slip

velocity perturbation of the form V(x)=V0 (1-A cos xx) were calculated with equations (11a) and (11b)

using different wavelengths k ¼ 2p/x for l* ¼ 0.7, a ¼ 0.008, Ds/rnd* ¼ 0.0024 /lm, rn ¼ 21 MPa,

G ¼ 2.5 · 104 MPa m ¼ 0.25 A ¼ 0.5 · 10)6 m/s, and Vo=1 · 10)6 m/s. The calculated distribution of

growth rates depends on the wavelength. The most uniform growth rate being associated with a half

wavelength (lc ¼ k/2) lc ¼ Gd*/Ds ¼ 0.5 m.
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5.2 Minimum Earthquake Nucleation Size

The minimum earthquake nucleation size can be estimated with a simpler

geometry than used in the previous section; for example a fixed length static slipped

patch (DIETERICH, 1986). Unstable sliding is only possible if fault strength drops so

that stored elastic energy from the surrounding rock can be used to drive further slip.

If an increment of slip on the fault surface reduces the fault strength faster than the

driving stress is reduced, an unstable condition develops in which fault slip can

accelerate into an earthquake and some of the stored elastic energy is radiated as

seismic waves. If the elastic stiffness of the loading system is expressed as k ¼ ds=dd,
then the requirement for instability at constant normal stress is a critical stiffness

(DIETERICH, 1979) kc ¼ rndl=dd. For (6b) slip instability occurs for k < kc � Ds=d�
(DIETERICH, 1992) (Fig. 1). Using a circular crack of constant stress drop, the

stiffness is k ¼ 7pG=16r. For this circular patch, earthquake nucleation with (6b) is

associated with patches of minimum radius rc ¼ 7pGd�=16Ds. For

G=2.5 · 104 MPa, an intermediate value of the ratio Ds=d�rn =0.002/ lm (see

section 2.3) and effective normal stress between 90 and 270 MPa (effective normal

stress gradient of 18 MPa/km over 5 to 15 km depth), the expected critical patch

radii is between 0.06 and 0.2 meters. Nucleating slip on patches of this size would not

be detectable at 7 km from the source even with the most sensitive instruments

currently available (e.g., borehole strain meters) (JOHNSTON and LINDE, 2002). A

more rigorous discussion and analysis of precursory strain and moment is given by

DIETERICH (1992). Given that surface and space-based strain measures are much less

sensitive to slip at depth than borehole instruments, the laboratory observations

imply that precursory strain of earthquakes can only be measured in deep boreholes

adjacent to seismic faults (also see, LORENZETTI and TULLIS, 1989).

5.3 Minimum Earthquake Size

Laboratory observations of frictional slip also imply a minimum earthquake size.

Comparisons between lab, mining-induced events and other small earthquakes by

MCGARR (1994; 1999) indicate that all are energetically similar, implying that

fracture energy and radiated energy can be treated as scale-independent percentages

of the available energy, at least for small events. Lab stick-slip events (OKUBO and

DIETERICH, 1981; LOCKNER and OKUBO, 1983) have ratios d�=Dds � 0:1 and the

laboratory observed dynamic strength drops are frictional (ðsy � sf Þ=rn constant)

with (sy � sf Þ=rn ¼ 0:09 (WONG, 1986); using these values to determine the slip

weakening coefficient Ds=d�rn leads to Dds � 0:9rnd�=Ds. A lab-derived intermediate

value for the slip-weakening coefficient, Ds=d�rn ¼ 0:002=lm predicts a minimum-

sized earthquake to have seismic displacements Dds � 450lm:
For a circular crack, the relationship between radius, static stress drop Dss and

seismic slip Dds is r ¼ 7pGDds=16Dss. Taking the estimate Dds =0.45 mm and a

range of static stress drops 0.1 to 10 MPa yields r = 155 to 1.55 m. The seismic
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moment Mo of a circular rupture of radius r is M0 ¼ Gpr2Dds and the lab-estimated

values of r and Dds yield M0= 8.5 · 1011 to 8.5 · 107 Nm. The minimum seismic

moment from the smallest friction dominated mining-induced events reported by

RICHARDSON and JORDAN (2002), Mmin
0 =4.7 x 109 Nm, are somewhat higher than

the laboratory-estimated minimum seismic moment, Mmin
0 =8.5 · 107 Nm, but

within the range of the prediction.

6. Conclusions

If crack growth is involved in earthquake nucleation at some scale, then

constitutive equations that describe nucleation should have two components resulting

in stable deformation at small inelastic strains (subcritical crack growth) and unstable

slip- weakening behavior at large strains (critical crack growth). Laboratory

observations from rock fracture and rock friction relevant to earthquake occurrence

and earthquake nucleation are consistent with such constitutive equations, as are the

predictions of the rate- and state- dependent constitutive formulation specific to rock

friction. Considering the detailed rheology of friction and rock fracture as both

resulting from crack growth is reasonable and generally expected because fractured

rock and highly comminuted wear product are the byproducts of brittle rock

deformation. A crack growth-based constitutive equation for earthquake nucleation

used with lab-derived constants predicts a minimum earthquake nucleation time on

the San Andreas fault of �1 yr. The predicted minimum nucleation patch radius for

an earthquake is on the order of 0.2 to 0.06 m and strains associated with nucleation

are much too small to be detected by surface or space-borne instruments. The

minimum earthquake moment implied by lab observations is �8.5 · 107 Nm.
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