Basic Seismology:
Some Theory and Observations




Farthquakes occur as slip across a plane in the earth.

Any local deformation in an elastic solid stresses
nearby material, which deforms in turn, stressing
nearby material, and soon ...

The local stresses and strains ave linked by the
constitutive properties of the material.

Consideration of basic relationships between the forces
and deformations 1 the material (1.e., Newton's ILaw)
leads to equations describing the propagation oi
SCISIIC Waves away itom the energy Source.

These propagating waves, cause most ol the damage im
carthquakes.
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* Medium

Origin time Travel time Arrival time

The seismic wavefield is generated at the source and modified by propagation through
the earth medium where is reflected, transmitted, focused, scattered, and attenuated. Our
knowledge of earthquake processes and earth structure comes from both forward
modeling and inversion of earthquake travel-time and ground-shaking data.
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= Shaking at a given site, say: one ol engineering
interest, 1s controlled by:

" The amount, pattern, dinection, and timing ol slip on the
fault

The distance of the site trom the fault

The types ol geologic structures and materials along the
wave pathi (€.g.., waves can be locused by geologic
contrasts, absorbed asithey: pass through materials with
Ineificient transmission propertics, eic.)

= The structure and physical propertics ol geologic materials
at thersite (€. 2., shaking can be ampliiicd or diminished im
ani alluvial basimiin complex ways depending on s
amplituderand itequency))




CHAPTER 2

Stress and Strain

to characterize the internal forces and deformations in solid materials. We
now begin a brief review of those parts of stress and strain theory that
will be needed in subsequent chapters. Although this section is intended to be
self-contained, we will not derive many equations and the reader is referred to
any continuum mechanics text (e.g., Malvern, 1969) for further details.
Deformations in three-dimensional materials are termed strain; internal forces
between different parts of the medium are called stress. Stress and strain do
not exist independently in materials; they are linked through the constitutive
relationships that describe the nature of elastic solids.

Q ny quantitative description of seismic wave propagation requires the ability

The Stress Tensor

Consider an infinitesimal plane of arbitrary orientation within a homogenous

elastic medium in static equilibrium. The orientation of the

(i plane may be specified by its unit normal vector, fi. The force per

unit area exerted by the side in the direction of fi across this plane

is termed the traction and is represented by the vector t(fi) =

(tx, ty, t,). There is an equal and opposite force exerted by the

side opposing f, such that t(—f) = —t(fi). The part of t that is

normal to the plane is termed the normal stress; that parallel to itis called the shear

stress. In the case of a fluid, there are no shear stresses and t = — P, where P is the

pressure.

The stress tensor, 7, in a Cartesian coordinate system (Fig. 2.1) may be defined'

by the tractions across the yz, xz, and xy planes:

’x(ﬁ) ,T(i) t!(i) t.(.( tx,\‘ tl':
=& @ 4@ |=|1: Ty T |-
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Development of the seismic wave
equation begins with consideration of
the forces acting on an infinitesimal
plane within a homogeneous elastic
medium in static equilibrium.

Forces (stress) and deformation (strain)
at a point in a general elastic solid are
related by a (81-component) fourth-
order constitutive tensor. If the physical
properties of the medium are direction-
independent (isotropic), a good first-
order approximation for the earth, the
number of independent elastic
parameters reduces to two. The P-wave
and S-wave seismic velocities at each
point in the medium can be determined
from these two elastic parameters and
the density.
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CHAPTER 3

The Seismic Wave Equation

| ' sing the stress and strain theory developed in the previous chapter, we now
construct and solve the seismic wave equation for elastic wave propagation
in a uniform whole space. This chapter will involve vector calculus and

complex numbers; some of the mathematics is reviewed in Appendix 2.

The Momentum Equation

In the previous chapter, the stress, strain, and displacement fields were consid-
ered in static equilibrium and unchanging with time. However, because seis-
mic waves are time-dependent phenomena that involve velocities and accelera-
tions, we need to account for the effect of momentum. We do this by applying
Newton’s law (F = ma from your freshman physics class) to a continuous
medium.

Consider the forces on an infinitesimal cube in a (x;, x», x3) coordinate system
(Fig. 3.1). The forces on each surface of the cube are given by the product of the
traction vector and the surface area. For example, the force on the plane normal
to x; is given by

F(x)=t(X,)dx>dx;
=tTX;dxrdx;

L301
= T2 th‘_)dX}, (31)
31

where F is the force vector, t is the traction vector, and 7 is the stress tensor. In
the case of a homogeneous stress field, there is no net force on the cube since
the forces on opposing sides will cancel out, that is, F(—%;) = —F(X,). Net force
will only be exerted on the cube if spatial gradients are present in the stress field.
In this case, the net force from the planes normal to x, is

P T
l"(ﬁl)—-‘c,’—)‘,I T | dxydxadxs,

731
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Now consider an infinitesimal cube
embedded within a homogeneous,
1sotropic elastic medium. If the stress
field is homogeneous there is no net
force on the cube, but spatial gradients in
the stress field generate net forces. The
cube 1S now 1n motion, and we use
Newton’s Law to derive the equation of
motion.

We can use relationships between stress
and strain to express stress gradients in
terms of displacements. These equations
can be used directly in finite-difference
equations. Otherwise, we can use vector
calculus to derive simpler wave

equations for the P-wave and S-wave
fields.
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Fig. 3.2. Displacements occurring from a harmonic plane P-wave (top) and S-

wave (bottom) traveling horizontally across the page. S-wave propagation is pure

shear with no volume change, whereas P-waves involve both a volume change

and shearing (change in shape) in the material. Strains are highly exaggerated

compared to actual seismic strains in the Earth.
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U(X, I) = A(w)e”iw(t—s-x)

= A(a))e_i((Dt—k-x)

Real seismic wavefronts in the earth are curved, but a plane wave can
be a useful concept. (For example, a spherical wave can be expressed
as a sum of plane waves.) This is the general form of a plane wave in
the frequency domain. Displacement varies in time and space (x-
dimension only in this case), expressed as an amplitude term times a
harmonic function of frequency and slowness, s, or wavenumber, k. A
spherical wave has a similar functional form with an additional
distance decay factor of 1/r.
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Solving The Seismic Wave Equation

Solutions of the seismic wave equation for
compressional- (P-) and shear (S-) waves 1 a
unitorm whole space are readily found, but this case
1S not very mteresting to a seismologist who, is trying
tormodel seismic waves in a realistic earth.




[nteresting (non-trivial) earth models that we might
wish to use contain gradients. i the physical
parameters that control wave propagation, but these
tactors severely complicate solutions of the wave
equation. Several approaches have been devised that
allow us to 1gnore the gradient terms and' {ind an

approximaie solution, yet still melude some realistic
structune m thermodel.
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Homogeneous Layer Methods

To first order, seismic velocity 1s a function only of
depth i the earth; the earth can be modeled as a
series oi homogeneous layers i which the gradient
terms vanish.

Wave propagation inside each layer 1s simple; it only
remains o keep track: off mteractions' ol the wave field
(refiection and transmission) at the layer boundaries
(this 1s a simpler problem).

A continuous l=dimensional velocity: gradient can be
modeled by simply ineneasing the number o layers:




Ray Methods

= The importance of the gradient terms varies as
[/irequency, so they become vanishingly small for
high-irequency waves. Thus, rays: traced through: a
model with continuous physical propertics accurately

describe the high-irequency wave field.




CHAPTER 4

Ray Theory: Travel Times

over 100 years to interpret seismic data. It continues to be used extensively

today, due to its simplicity and applicability to a wide range of problems.
These applications include most earthquake location algorithms, body wave focal
mechanism determinations, and inversions for velocity structure in the crust and
mantle. Ray theory is intuitively easy to understand, simple to program, and very
efficient. Compared to more complete solutions, it is relatively straightforward
to generalize to three-dimensional velocity models. However, ray theory also has
several important limitations. It is a high-frequency approximation, which may
fail at long periods or within steep velocity gradients, and it does not easily predict
any “nongeometrical” effects, such as head waves or diffracted waves. The ray
geometries must be completely specified, making it difficult to study the effects
of reverberation and resonance due to multiple reflections within a layer.

In this chapter, we will be concerned only with the timing of seismic arrivals,
deferring the consideration of amplitudes and other details to later. This narrow
focus is nonetheless very useful for many problems; a significant fraction of
current research in seismology uses only travel time information. The theoretical
basis for much of ray theory is derived from the eikonal equation (see Appendix
3); however, because these results are not required for most applications we do
not describe them here.

S eismic ray theory is analogous to optical ray theory and has been applied for

Snell’'s Law

Consider a plane wave, propagating in material of uniform velocity v, that inter-
sects a horizontal interface (Fig. 4.1). The wavefronts at time 7 and time 7 + At are
separated by a distance As along the ray path. The ray angle from the vertical, 8,
is termed the incidence angle. This angle relates As to the wavetront separation
on the interface, Ax, by

As = Ax sin$. 4.1)
Since As = vAt?, we have

vAt = Ax sinf
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Ray Theory.
=A high-frequency approximation
=Simple to program, computationally
elficient, and easy to generalize to 3~
dimensional earth models

®Good for: modeling seismic phase
arrival times, earthquake location
algonithms, body-wave focal
mechanism determinations, 1mversions
tior velocity structurne

"Not very good iior: amplitudes
because it 1s a high-frequency;
APProXimation




4.2 Ray Paths for Laterally Homogeneous Models

In most cases the compressional and shear velocities increase as a function of
depth in the Earth, Suppose we examine a ray traveling
downward through a series of layers, each of which is '
faster than the layer above. The ray parameter p remains 10
constant and we have i

i
{2
p=u sin 61 = Uy Sil’lez = U3 Sil’l03. (45) i

Lo, >

He
i

If the velocity continues to increase, 6 will eventually
equal 90° and the ray will be traveling horizontally.

This is also true for continuous velocity gradients (Fig. 4.3). If we let the
slowness at the surface be uq and the takeoff angle be 6;, we have

ugsiny = p = usinb. (4.6)

When § = 90° we say that the ray is at its furning point and p = uy,, where
uy, is the slowness at the turning point. Since velocity generally increases with
depth in Earth, the slowness decreases with depth. Smaller ray parameters are
more steeply dipping at the surface, will turn deeper in Earth, and generally travel
farther. In these examples with horizontal layers or vertical velocity gradients,
p remains constant along the ray path. However, if lateral velocity gradients or
dipping layers are present, then p will change along the ray path.

v
z \
™~ g=90°

Fig. 4.3. Ray paths for a model with a continuous velocity increase with depth will curve
back toward the surface. The ray turning point is defined as the lowermost point on the ray
path, where the ray direction is horizontal and the incidence angle is 90°.
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A seismic version of Snell’s Law from
optics can be used to track ray
geometry through inhomogeneous
materials. Rays can be traced through
regions with continuous velocity
gradients.
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Fig. 4.5. A triplication in a travel time curve resulting from
a steep velocity increase.

Ray tracing results are often summarized as travel-time curves: travel-
time as a function of distance from the ray source. Each point on the
curve represents a different ray path through the model. This example
shows a case with a steep velocity increase. Locally a flat earth model
can be used; for global studies we use a spherical earth model.
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Fig. 4.14. Global seismic ray paths and phase names, computed for the PREM
velocity model. P-waves are shown as solid lines, S-waves as wiggly lines. The
different shades indicate the inner core, the outer core, and the mantle.

sP
pP

Fig. 4.15. Deep earthquakes generate surface-reflected arrivals, termed
depth phases, with the upgoing leg from the source labeled with a lower-
case p or s. Ray paths plotted here are for an earthquake at 650 km depth,
using the PREM velocity model.

Rays are a particularly useful tool for
studying global body-waves. This
model of the earth shows the mantle,
liquid outer core, and solid inner core.

Naming codes for whole-earth phases:
P: P-wave in mantle

K: P-wave in outer core

I: P-wave in inner core

S: S-wave in mantle

J: S-wave in inner core

c: reflection off core-mantle boundary
1: reflection off inner-core boundary
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Fig. 4.16. The vertical, radial, and transverse components of
ground motion (velocity) from the January 17, 1994 Northridge
earthquake recorded at the IRIS/IDA station OBN at 88.5°
range. The original broadband records have been filtered to
between 15 and 100 s period. Time is in minutes relative to the
earthquake origin time; amplitudes are self-scaled.
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Seismograms are records of
earthquake ground shaking vs time.
Modern seismographs record three
orthogonal components of ground
shaking: one vertical component and
two horizontal components. Ground
shaking in any direction can be
computed by combining these three
components. To understand earth
structure and earthquake processes
we need records of ground shaking
from a wide range of earthquake
magnitudes at a wide range of
distances.
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Fig. 4.18. A stack of short-period (<2 s), vertical component data from the global networks
between 1988 to 1994, See Figure 4.19 for a key to the phase names. (From Astiz et al., 1996.)
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Fig. 4.19. A key to the phases visible in the short-period stack plotted in Fig. 4.18. Travel time
curves are calculated using the IASP91 velocity model (Kennett and Engdahl, 1991). (From
Astiz et al., 1996,)
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Fig. 4.20. A stack of long-period (> 10 s), vertical component data from the global networks
between 1988 to 1994. See Figure 4.23 for a key to the phase names. (From Astiz et al., 1996.)
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Fig.4.23. The phases visible in the long-period stacks shown in Figures 4.20-4.22. Travel time
curves are calculated using the IASP91 velocity model (Kennett and Engdahl, 1991). (From
Astiz et al., 1996.)
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Fig. 3.5-19 Snapshots of a synthetic SH wave field showing the propagation of waves after a 600 km-deep earthquake. The initial wave front moves
away from the source at the lower left side of the figures. The wave front develops complexity due to interactions with the surface, CMB, and internal
discontinnities and velocity gradients, The wave field is computed using the spherically symmetric PREM velocity model. Amplitudes are raised to

a power of 0.8 to enhance smaller signals. (After Wysession and Shore, 1994.)
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CHAPTER 5

Inversion of Travel Time Data

travel time curves from a known velocity structure. We derived expressions

for ray tracing in a one-dimensional (1-D) velocity model in which velocity
varies only with depth; ray tracing in general three-dimensional (3-D) structures
is more complex but follows similar principles. We now examine the case where
we are given travel times obtained from observations and wish to invert for a
velocity structure that can explain the data. As one might imagine, the inversion
is much more complicated than the forward problem. The main strategy used by
seismologists, both in global and crustal studies, has generally been to divide the
problem into two parts:

| n the preceding chapter we examined the problem of tracing rays and calculating

(1) A 1-D “average” velocity model is determined from all the available data.
This is generally a nonlinear problem but is tractable since we are seeking a
single function of depth. Analysis often does not proceed beyond this point.

(2) If sufficient 3-D ray coverage is present, the 1-D model is used as a reference
model and a travel time residual is computed for each datum by subtracting
the predicted time from the observed time. A 3-D model is obtained by
inverting the travel time residuals for velocity perturbations relative to the
reference model. If the velocity perturbations are fairly small, this problem
can be linearized and is computationally feasible even for large data sets.
This is the basis for tomographic inversion techniques.

We now consider each of these problems in turn. For now we will assume that

the source locations are precisely known, deferring discussion of the earthquake
location problem to the end of the chapter.

One-Dimensional Velocity Inversion

Before beginning it is useful to imagine how one might obtain a 1-D velocity
structure from travel times. Assume that we are given a simple travel time curve
without any triplications or low-velocity zones. Each point on the T(X) curve has
a slope, which gives the velocity at the turning point of the ray. Thus, we know
that a particular velocity must be present; the problem is to determine where. This
is equivalent to assigning a depth to each point along the travel time curve. To do
this we need to know the velocity structure above the depth in question, and so
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Given travel-time observations, can
we find an earth velocity structure
that is consistent with the data?

Typical strategy:

1) Find an average 1-D velocity-
depth function. This is a
nonlinear problem, but tractable

since we seek a single function of
depth.

If enough data are available we
can get a 3 -D model from travel-
time residuals relative to a 1-D
reference model (seismic
tomography).




Elegant integral-transform methods (e.g., Herglotz-Wiechert) have been developed
to derive 1-D velocity models, but it can be difficult to apply formal inversions to
noisy and/or discontinuous travel-time data. A simple alternative is to fit the travel-
time data with a series of straight segments. Each segment corresponds to a
homogeneous layer in the model.

>

Fig. 5.2. Straight lines fit to T(X) data can be inverted for a “layer
cake” velocity model.
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Variable changes and other mathematical tricks can be used to
linearize the problem and simplify the inversion. However ...

It’s not clear that it pays to push 1-D travel-time inversion
methods much further. For example, seismograms contain
more information than travel-times alone (amplitudes are very
sensitive to velocity gradients) and are now readily available
in digital form.

The current state of the art involves synthetic seismogram
modeling of the entire waveform, and seismic tomography, 3-
D inversions of large datasets of travel-time residuals
(differences between observed and predicted travel-times).
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Seismic Tomography

Assuming that a reference 1-D model is available, the next step is to parameterize
the model of 3-D velocity perturbations. This is commonly done in two different
ways: (1) the model is divided into blocks of uniform velocity perturbation or (2)
spherical harmonic functions can be used in the case of global models to param-
eterize lateral velocity perturbations, with either layers or polynomial functions
used to describe vertical variations.

Each observed travel-time residual corresponds to a ray path that connects the source and
reciever. This geometry must be determined for each observation, and then the travel-time
through each block computed for each ray (this is computationally intensive). Each travel-
time residual (one for each ray) can be expressed as a sum over all the blocks along the
ray of the product of block travel-time and block velocity perturbation. This can be
expressed in vector and matrix form, and if the number of residual measurements exceeds
the number of blocks in the model standard techniques can be used to invert for the vector
of block velocity adjustments.
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Synthetic model Ray geometry Inversion result
—_—

Fig. 5.7. The resolution of tomographic models is often evaluated using the impulse response
test (top) or the checkerboard test (bottom). In each, a synthetic set of travel times are created
for a simple velocity model using the same ray paths present in the real data; then the synthetic
times are inverted to see how well the starting model is recovered.
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Earthquake Location

" Farthquakes are delined by their origin time and
hypocenter (location of first energy release). Inverting
travel-time data for these parameters 1S one oi the
oldest challenges i seismology. Travel-time 1S a
nonlinear tunction of earthquake location.

- Common approaches:

1) lierative (limearized) mversion methods

2) Masterevent methods
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CHAPTER 6

Ray Theory: Amplitude and Phase

in Earth, ignoring the amplitude, polarity, and shape of the pulses. Such

an analysis is not without its merits in examining real data, since observed
trave] times are usually more robust and stable than amplitudes. However, am-
plitude and waveform shape are also important and contain valuable additional
information about Earth structure and seismic sources.

To model amplitude variations, ray theory must account for geometrical spread-
ing effects, reflection and transmission coefficients at interfaces, and intrinsic at-
tenuation. We have already seen some aspects of geometrical spreading in the 1 /r
factor in the equations for the spherical wavefront (Section 3.5) and in the eikonal
equation (Appendix 3). However, because geometrical spreading is most easily
understood in terms of the energy density contained in wavefronts, we begin by
examining the energy in seismic waves.

l ' p to this point we have considered only the travel times of rays traveling

Energy in Seismic Waves

The energy density E contained in a seismic wave may be expressed as a sum of
kinetic energy £ x and potential energy Ew:

E=Ex+ Ew. 6.1
The kinetic energy density is given by
6.2)
where p is the density and # is the velocity. This is analogous to £ = %mv2
from elementary physics. The potential energy density Ey, is also called strain
energy and results from the distortion of the material (the strain) working against
a restoring force (the stress). From thermodynamic considerations (e.g., see PP
22-23 of Aki and Richards) it can be shown that

EW = %fijeijs (6.3)

where 7;; and ¢;; are the stress and strain tensors respectively.
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To model amplitudes in ray theory we
must account for geometrical

spreading, reflection and transmission
at interfaces, and anelastic attenuation.

Energy in a plane wave is proportional

to the squares of both amplitude and
frequency.




To account for geometrical
effects of propagation consider
a ray tube in which energy flux
1s conserved. As the wavefront
spreads out from the source,
amplitude varies inversely as
the square root of the surface
area of the patch enclosed by
the ray tube. For a simple
spherical wave the surface area

grows as r2 (r is distance) and
amplitude scales as 1/r.
Amplitude can actually increase
if the wave is focused during
propagation.
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Figure 4.36. Waves - = = = Ray paths of waves generated
generated at an interface v . o .

between two elastic - . (reflected and transmitted) by a P-
media by an incident : . ’ - 5 .
wave incident (upper left) on an

P-wave. The incident . - . ,
Pwavehasampliudedy =7 No. . o g J interface between two media with
and angle of incidence - . - L - . .

The reflected P- and e . s different elastic properties.

SV-waves have angles of ' ‘ . -

reflection e and f; and

amplitudes Ay and By,

respectively. The

transmitted P- and

SV-waves have angles of

refraction e; and f; and

amplitudes A; and By,

respectively.
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Fig. 6.4. Reflection and transmission coefficients versus ray angle for a downgoing
SH-wave incident on the Moho. In the top plots, the real part of the reflection coef-
ficient is shown with a thin solid line, the imaginary part with a dashed line, and the
magnitude with a heavy line. The lower plots show the change in the phase angle for
a harmonic wave. The sign of the imaginary part of the reflection coefficients plotted
here assumes that a phase shift of —90° represents a & /2 phase advance (see text).
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Amplitude and phase of
reflected and transmitted
waves from SH-wave incident
on interface as a function of
incidence angle.




Modeling Plane Waves in Layers

Some problems in wave propagation are better
addressed by considering plane waves instead of rays,
for' example the amplification oi ground motion due
o resonance within a near-suriace layer. Poweriul
techniques have been developed for modeling plane-
waye propagation im earth models consisting oi
hoerizontal layers. Solutions, ol the seismic wave
equation iollow Irom matching displacements and
stresses across layer boundaries (Thomson-Haskell
and reficctivity methods).
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Attenuation

[n addition to geometrical spreading, seismic waves
lose energy due. to scatiering and anelasticity as they.
propagate.

Anelasticity 1s sometimes called internal friction
since seismic energy 1s converted to heat.

Energy-dissipation mechanisms include grain-
boundary, grain-deiect, and fluid mieractions mduced
by, dynamic Stresses as Seismic waves pass by.

These processes are diificult to quantily: since they,
must be iselated iirom other complex source and
Wwaye-propagation phenomenas




. Attenuation is defined as. the {ractional energy loss
per eycle of motion, and 18 quantified by the
parameter 1/Q.

" The amplitude off a seismic wave can be written as, a

product of a real exponential term describing the
amplitude decay: irtom: attenuation and an Mmaginary,
exponential term describing the oscillations.
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Fig. 3.7-12 Frequency dependence of attenuation for seismic waves in
the mantle. Q is shown as though all measurements were for S¢S waves,
agood measure of the average mantle value because of their path from
surface to core and back. (Sipkin and Jordan, 1979.© Seismological
Society of America. All rights reserved.)
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CHAPTER 7

Reflection Seismology

Earth'’s internal structure by examining energy reflected at steep incidence

angles from subsurface layers. This technique may loosely be termed re-
flection seismology and has been used extensively by the mining and petroleum
industries to study the shallow crust, generally using portable instruments and
artificial sources. However, similar methods can be applied to the deeper Earth
using recordings of earthquakes or large explosions. Because reflected seismic
waves are sensitive to sharp changes in velocity or density, reflection seismol-
ogy can often provide much greater lateral and vertical resolution than can be
obtained from study of direct seismic phases such as P and S (analyses of these
arrivals may be termed refraction seismology). However, mapping of reflected
phases into reflector depths requires knowledge of the average background seis-
mic velocity structure, to which typical reflection seismic data are typically only
weakly sensitive. Thus refraction experiments are a useful complement to reflec-
tion experiments when independent constraints on the velocity structure (e.g.,
from borehole logs) are unavailable.

Reflection seismic experiments are typically characterized by large numbers
of sources and receivers at closely spaced and regular intervals. Because the data
volume generally makes formal inversions too costly for routine processing, more
practical approximate methods have been widely developed to analyze the results.
Simple time versus distance plots of the data can produce crude images of the
subsurface reflectors; these images become increasingly accurate as additional
processing steps are applied to the data.

Our discussion in this chapter will be limited to P-wave reflections, as the
sources and receivers in most reflection seismic experiments are designed to pro-
duce and record P-waves. Our focus will also mainly be concerned with the travel
time rather than the amplitude of seismic reflections. Although amplitudes are
sometimes studied, historically amplitude information has assumed secondary
importance in reflection processing. Indeed often amplitudes are self-scaled prior
to plotting using automatic gain control (AGC) techniques. Finally, we will con-
sider a two-dimensional geometry, for which the sources, receivers and reflectors
are assumed to lie within a vertical plane. Recently, an increasing number of
reflection surveys involve a grid of sources and receivers on the surface that are
capable of resolving three-dimensional Earth structure. Most of the concepts de-
scribed in this chapter, such as common midpoint stacking and migration, are

O ne of the most important applications of seismology involves the probing of

Traditionally, reflection seismic
methods were developed to explore for
petroleum or mineral resources in the
shallow crust. Repeatable, artificial
seismic sources (explosions or
vibrations) and arrays of seismometers
are deployed at the earth’s surface, and
computer-intensive processing
methods are used to map boundaries at
depth. Extensive data redundancy is
used to suppress noise and enhance the
subsurface images.
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Fig. 7.1. Downgoing seismic waves from a surface source are reflected by
subsurface layers, producing a seismogram with discrete pulses for each layer.
In this example, the velocity contrasts at the interfaces are assumed to be small
enough that multiple reflections can be ignored.
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Fig. 7.2. The structural cross section on the left is imaged by an idealized zero-
offset seismic reflection profile on the right. Here we have assumed that velocity is
approximately constant throughout the model (except for thin reflecting layers) so
that time and velocity scale linearly.
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Zero-offset sectic

Fig. 7.10. The endpoint of a horizontal reflector will produce a
diffracted arrival in a zero-offset section. The reflector itself can be
modeled as the coherent sum of the diffraction hyperbola from in-
dividual point scatterers. The diffracted phase, shown as the curved
heavy line, occurs at the boundary of the region of scattered arrivals.

Distance (km)
5 6

Fig. 7.11. Original (top) and migrated (bottom) reflection data from a survey line across the
Japan trench (figure modified from Claerbout, 19835; data from the Tokyo University Oceano-
graphic Research Institute).

“Introduction To Seismology” by P. Shearer, Cambridge University Press




CHAPTER 8

Surface Waves

the seismic wave equation that exist in whole spaces. However, when free

surfaces exist in a medium, other solutions are possible and are given
the name surface waves. There are two types of surface waves that propagate
along Earth’s surface, Rayleigh waves and Love waves. For laterally homoge-
neous models, Rayleigh waves are radially polarized (P /SV) and exist at any free
surface, whereas Love waves are transversely polarized and require some velocity
increase with depth (or a spherical geometry). Surface waves are generally the
strongest arrivals recorded at teleseismic distances and they provide some of the
best constraints on Earth’s shallow structure and low-frequency source proper-
ties. They differ from body waves in many respects—they travel more slowly,
their amplitude decay with range is generally much less, and their velocities are
strongly frequency dependent.

O ur treatment to this point has been limited to body waves, solutions to

8.1 Love Waves

Love waves are formed through the constructive interference of high order SH
surface multiples (i.e., S5, SSSS, SSSSS, etc.). Thus, it is possible to model Love
waves as a sum of body waves. To see this, consider monochromatic plane wave
propagation for the case of a vertical velocity gradientin a laterally homogenecous
model, a situation we previously examined in Section 6.4. In this case, a plane
wave defined by ray parameter p will turn at the depth where f = 1/p. Along
the surface the plane wave will propagate with horizontal slowness defined by
p. If the surface bouncepoints are separated by a distance X(¢), then the travel
time along the surface between bouncepoints is given by pX(p). This follows
from our definition of a plane wave and does not depend upon the velocity model.

In contrast, the travel time along the ray paths is given by 7'(p) and is a function
of the velocity—depth profile.

Because these travel times are not the same, destructive interference will occur
except at certain fixed frequencies. Along the surface, the phase (0 to 27) of a

Rayleigh waves are radially polarized
waves that propagate at the free surface
of an elastic medium. Love waves are
transversely polarized waves that require
a vertical velocity gradient (or spherical
geometry). Surface waves are generally
the strongest arrivals at great distances
from earthquakes. Compared to P and S
body waves they travel more slowly,
decay much less with distance, and their
velocities depend strongly on frequency.

“Introduction To Seismology” by P. Shearer, Cambridge University Press




S
-

Fig. 8.1. Love waves can be constructed as a sum of § surface
multiples. The dashed lines show the group and phase velocities at a
fixed value of the ray parameter p; the phase velocity is faster than
the group velocity.
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zontal propagation across the page. Love waves are purely transverse motion, whereas Rayleigh
waves contain both vertical and radial motion. In both cases, the wave amplitude decays strongly

Fig. 8.4. Fundamental Love (top) and Rayleigh (bottom) surface wave displacements for hori-
with depth.
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Fig. 8.8. The vertical, radial, and transverse components of motion for a March
11, 1989, earthquake at 230 km depth in the Tonga trench recorded at IRIS/IDA
station NNA in Peru. P, SV, and Rayleigh waves arec most visible on the vertical
and radial components; SH and Love waves appear on the transverse component.
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Earth’s free oscillations can be
derived as a sum of surface
waves.

Fig. 8.11. Spherical harmonic functions ¥;" up to degree [ = 3. Positive
values are shown as white, negative as black, with near-zero values as gray.
There are 2/+ 1 values of m at each degree. Note that the negative m harmonics
are rotated versions of the positive m harmonics.
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Fig. 8.12. A highly exaggerated picture of the normal mode o.52. This mode
has a period of about 54 minutes; the two images are separated in time by 27
minutes.
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Fig. 4.3-5 The P-wave arrival waveform for a deep earthquake combines
the effect of the source time function, attenuation, and the instrument.

To fully describe the earthquake ground shaking, we must also consider the seismic
source.
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CHAPTER 9

Source Theory

distribution of idealized stmple forces
tion of seismic waves, but we have largely neglected the question of where the
waves come from and how the rafii:tfd s};ismic cncrgye:?:lates to the physit:a] that pr Oduces exaCtly the Same

properties of the source. These topics can often be ignored if our interest is solely . .

in learning about details of Earth structure outside of the source regions, such dlSplaCement ﬁeld as the Sllp.
as travel time studies of velocity structure. However, in many cases resolving

seismic structure requires some knowledge of the source characteristics, and, of

course, resolving source properties is fundamental to any real understanding of

earthquakes. Because seismic source theory can be very complex, we will not

formally derive most of the equations in this chapter; instead we will summarize

many of the important results that are of practical use in seismology and refer the

reader to Aki and Richards for a more detailed theoretical treatment.

Slip on a fault can be modeled as a
I n the preceding chapters we have described methods for modeling the propaga-

9.1 Green’s Functions and the Moment Tensor
Our goal in this chapter is to understand how the observed seismic displacements
at some distance from a seismic event can be related to the source properties. Let
us begin by recalling the momentum equation for an elastic continuum

4 = 8;1; + fi» 0.1

912

where p is the density, u; is the displacement, t;; is the stress tensor, and fi is the
body force term. Now consider the displacement field in a volume V bounded by
a surface S. The displacements within V must be a function solely of the initial
conditions, the internal forces within V, and the tractions acting on §. A more
formal statement of this fact is termed the unigueness theorem and is derived in
Section 2.3 of Aki and Richards. It turns out that specifying either the tractions
or the displacement field on S, together with the body forces f, is sufficient to
uniquely determine u throughout V.

Solving (9.1) in general is quite difficult if we include the fi term, and in
Chapter 3 we quickly dropped it to concentrate on the homogeneous equation
of motion. Let us now explore how the properties of the source can be modeled
and related to the seismic displacements observed in the Earth. Consider a unit
force vector (X, fo) applied at point xo at time #o. By itself, this is not a realistic
seismic source: rather, it is what would result if the hand of God could reach
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Force Couples Double Couple

Fig. 9.1. Force couples are opposing point forces sep-
arated by a small distance. A double couple is a pair
of complementary couples that produce no net torque.

We define the force couple M;; in a Cartesian coordinate system as a pair of
opposing forces pointing in the i direction, separated in the j direction. The nine
different force couples are shown' in Figure 9.2. The magnitude of M;; is given
by the product fd and is assumed constant as d goes to zero in the limit of a point
source. It is then natural to define the moment tensor M as

My My M
M= | Myy My Msy)|]|. (9.3)

Mz Mz Ms;

To conserve momentum, internal forces must be specified as balanced force couples.
If we can compute the ground motion from a single idealized force (the Green’s
function) the full seismic wave field can be computed as a linear superposition. The
strength of the force is given by the seismic moment, the product of the shear
modulus of the source medium, the slip displacement on the fault, and the fault area.

“Introduction To Seismology” by P. Shearer, Cambridge University Press




M3

Fig. 9.2. The nine different force couples that make up the compo-
nents of the moment tensor.
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Fig. 9.3. A planar fault is defined by the
strike and dip of the fault surface and the
direction of the slip vector.
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Fig.9.4. Owing to the symmetry of the moment tensor, these
right-lateral and left-lateral faults have the same moment ten-
sor represention and the same seismic radiation pattern.
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Fig. 9.8. Examples of focal spheres and their corresponding fault ge-
ometries. The lower half of the focal sphere is plotted to the left, with
the compressional quadrants shaded. The block diagrams on the right
show the two fault geometries (the primary and auxillary fault planes)
that could have produced the observed radiation pattern.
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If we generalize the concept of the scalar moment (M, = wD A) from Section
9.2 to be time dependent, we may define

. ad
M(t) = Mb-t-[A(t)D(t)], (9.19)

area =M, .
and the area under the M (¢) function represents M, the

total change in M(t), which can be expressed as

t —
> M, = uDA, (9.20)

where u is the shear modulus, D is the average displacement across the fault, and
A 1s the area of the fault.

Slip across the fault is generally not instantaneous, but occurs over a finite duration.
The time dependence of the source controls the amplitude and timing of seismic
waves.
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near-field

\
’_f_ displacement
M(1) = u(t)
A far-field Fig. 9.10. The relationships between near-field dis-

displacement  placement and far-field displacement and velocity.

far-field
velocity

Offsets across the fault (“near-field”) are permanent, but at greater distances the
wavefield is dominated by dynamic (“far-field””) displacements that decay back to zero
after the seismic waves pass by. The far-field displacement scales like the time derivative
of the seismic moment (previous slide).
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Fig. 9.14. A boxcar pulse in the time domain produces a sinc function in the
frequency domain.

It is often more convenient to think about source processes in the frequency domain
rather than the time domain.
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Fig. 9.15. The amplitude spectrum for the w ™2 source model. The
spectrum is the product of two sinc functions, corresponding in the
time domain to the convolution of two boxcar functions of durations
74 and 7. The spectral amplitudes fall off as w™! for 2/1y < » <
2/t and as =2 for w > 2/1,. For the spectrum plotted in this figure,
g = 81,.
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The low-frequency level of the
displacement spectrum is
proportional to the seismic
moment - the strength or size of
the earthquake. The shape of the
spectrum at higher frequencies
tells us about the details of the
time dependence and complexity
of the slip.




Stress Drop

- Stress drop 1s defined as the average difference
between stress on a fault before and alter an
carthquake. Released (“dropped™) elastic stress 1s
what generates permanent ground deformation and
SEISMmIC Waves.

We can estimate stress drop itom field measurements
oir average slip, tault dimension, and shear modulus.

Alternatively, stress drop can be estimated irom
seismic data. Seismic moment and tault rupture
dimension can be estimated iirom the levels and
Shapes ol sounce spectra, and stress drop compuicd
lior a speciiic iault shape (€.2., Brune s model).
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Source Scaling and Magnitude

A
log[A(w)]

Fig. 9.17. For larger events, the corner in the
source spectrum moves to lower frequencies, re-
ducing the observed amplitude at a fixed fre-
quency point.

Traditional magnitudes are measured at specific ground motion frequencies. These
idealized source spectra show how spectral level and corner frequency scale with
earthquake size. Ground motion measured near 1 Hz saturates (does not continue to
scale upward with seismic moment) for earthquakes larger than about magnitude 7.
This leads to inconsistencies between magnitude scales and misrepresentation of the
relative sizes of large earthquakes. Seismic moment and moment magnitude overcome
these limitations of traditional period-based magnitude measurements.
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San San
Fernando, Francisco, Alaska, 1964
1971 1906
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M;=6.6 M;=78 M;=8.4
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—
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Fig. 4.6-3 Comparison of moment, magnitudes, fault area, and fault slip
for four earthquakes listed in Table 4.6-1. M, saturates for events with
M,,> 8 and so is no longer a useful measure of earthquake size.
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Table 9.1. Some Big Earthquakes (Mg in 1022 Nm)

Date Region mp

1992 June 28 Southern California
1906 April 18 San Francisco

1989 May 23 Macquarie Ridge
1994 June 9 Bolivia

1977 August 19 Indonesia

1957 March 9 Aleutian Islands
1964 March 28 Alaska

1960 May 22 Chile
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