Strong Ground Motions from 2010 Chile and 2011 Tohoku Earthquake

Jonathan P. Stewart UCLA

Maule (Chile) Earthquake Collaborators

- Rubén Boroschek, University of Chile
- Víctor Contreras, University of Chile
- Dong Youp Kwak, UCLA

Tohoku (Japan) Earthquake Collaborators

- Saburoh Midorikawa, Tokyo Institute of Technology
- Hiroyuki Miura, Tokyo Institute of Technology
- Khatareh Khodaverdi, UCLA
- Yousef Bozorgnia, PEER center
- Kenneth Campbell, EQECat
- Robert W. Graves, USGS Pasadena

Significance of these Data

Interface subduction earthquakes

Outline

- Record processing. Database attributes.
- Finite fault model. Computation of site-to-source distances (R_{rup}, R_{ib})
- Direct data interpretation: Site effects, directivity, etc.
- GMPE comparisons: Magnitude– scaling, distance scaling, event terms, intra-event standard deviation (φ).

Record Processing

- From V1 data (digitized, acc units, mean removal)
- High-pass filter applied (acausal, Butterworth)

Record Processing

- From V1 data (digitized, acc units, mean removal)
- High-pass filter applied (acausal, Butterworth)
- Pseudo-acceleration response spectra computed (3-component)
- Processing by U. Chile (Maule) and PEER (Tohoku; in progress)

Database Attributes (Chile)

- 31 recordings
- Most SMA and QDR
- Mostly north of fault
- 34-730 km
- Preliminary site classifications

Database Attributes (Japan)

- Approx. 1200
 Knet and
 Kiknet
- Eventually 2000
- All digital
- 49-500 km
- V_s profiles for most sites.

Outline

- Record processing. Database attributes.
- Finite fault model. Computation of site-to-source distances (R_{rup} , R_{ib})
- Direct data interpretation: Site effects, directivity, etc.
- GMPE comparisons: Magnitude– scaling, distance scaling, event terms, intra-event standard deviation (φ).

Finite Fault Models

- Consider published models in peerreviewed journals
- Various data sources (InSAR, GPS, teleseismic, strong motion, tsunami). Preference to models that include strong motion (Japan)
- Models trimmed to remove patches with low slip

Delouis et al. 2010 selected and trimmed as shown

Trimmed surface projections High frequency zones on fault

SGMA locations of Kurahashi and Irikura (2011): orange

High frequency (0.5 - 1 Hz) radiation areas determined using back-projection of teleseismic array observations. Meng et al. (2011): blue

Outline

- Record processing. Database attributes.
- Finite fault model. Computation of site-to-source distances (R_{rup}, R_{ib})
- Direct data interpretation: Site effects, directivity, etc.
- GMPE comparisons: Magnitude– scaling, distance scaling, event terms, intra-event standard deviation (φ).

Concepción records:

CONC (soft soil) CCSP (firm soil)

$$R_{rup} = 34-35$$
 km

No polarization in FN direction

Apparent site period at CONC

Talca records.

CONT (soft soil) Others (firm soil)

$$R_{rup} = 40-85$$
 km

Consistent spectra on firm ground

Apparent broad amplification at

Outline

- Record processing. Database attributes.
- Finite fault model. Computation of site-to-source distances (R_{rup}, R_{ib})
- Direct data interpretation: Site effects, directivity, etc.
- GMPE comparisons: Magnitudescaling, distance scaling, event terms, intra-event standard

Selected Subduction GMPEs

- BC Hydro [2011]: Worldwide
- Arroyo et al. [2010]: Interface, Mexico
- Atkinson & Boore [2003]: Worldwide
- Garcia et al. [2005]: Intraslab, Mexico
- Kanno *et al*. [2006]: Japan
- Lin & Lee [2008]: Taiwan
- McVerry et al. [2006]: New Zealand
- Youngs et al. [1997]: Worldwide
- Zhao et al. [2006]: Japan

GEM Project, Task 2

Selected Subduction GMPEs

- BC Hydro [2011]: Worldwide
- Arroyo et al. [2010]: Interface, Mexico
- Atkinson & Boore [2003]: Worldwide
- Garcia et al. [2005]: Intraslab, Mexico
- Kanno *et al*. [2006]: Japan
- Lin & Lee [2008]: Taiwan
- McVerry et al. [2006]: New Zealand
- Youngs et al. [1997]: Worldwide
- Zhao et al. [2006]: Japan

GEM Project, Task 2

Magnitude Scaling

10

Magn. (Mw)

Figure courtesy Carola Di Alessandro

Magn. (Mw)

Magn. (Mw)

Magnitude Scaling

Data from 70 to 150 km

Magnitude Scaling

Distance Scaling

Distance Scaling

$$R_{i} = \ln(IM_{i})_{rec} - \ln(IM_{i})_{GMPE}$$

$$R_{i} = \ln(IM_{i})_{rec} - \ln(IM_{i})_{GMPE}$$

Median of R_i : Event term, η (well recorded earthquakes)

Standard deviation of R_i : Intra-event standard deviation, ϕ

Only Maule data. No residuals analysis yet for Tohoku data

Reasonable match

Large \(\phi \) from attenuation misfit

Preliminary Conclusions

- Evidence of strong motion being controlled by low-slip portions of fault (Tohoku)
- No evidence of ground motion polarization from directivity (Maule data)
- Data useful for:
 - Constraint of magnitude scaling functions
 - Site effects in subduction regions
 - Regional variations in distance attenuation rates