Current plans for implementing eastern edge of Cascadia rupture zone for Canadian hazard maps

Garry Rogers
Geological Survey of Canada
Pacific Geoscience Centre

We are considering 3 models in a logic tree approach:

 Eastward limit of thermal/geodetic defined transition zone (450 degrees C)

Upper limit of ETS zone

 Significant seismogenic rupture may not extend to 450 degree C limit

Thermal/geodetic model

Positional uncertainty of rupture limit (450 degrees C) is estimated at $_{42^{\circ}N}$ about +/- 20 km

Region of ETS Slip Episodes for Northern Cascadia Upper (seaward) edge of ETS slip zone delineates max. landward penetration ETS Slip Region of the next megathrust rupture Adapted from H. Dragert

model 49°N
Seaward edge of
ETS zone defines
Landward extent of
seismic rupture

Adapted from K. Wang

"Transition"

logic tree weights

 Eastward limit of thermal/geodetic defined transition zone (450 degrees C position) 	50	60
 Upper limit of ETS zone 	25	20

(+20 km down-dip)

 Significant seismogenic rupture may not extend to 450 degree C limit (-20 km up-dip)