MARCH 22, 2012

EFFECTS OF LONG-DURATION SHAKING ON BUILDING COLLAPSE RISK

Abbie Liel, Ph.D., P.E. & Meera Raghunandan, Ph.D. Candidate University of Colorado, Boulder

DEFINITION OF DURATION

GROUND MOTIONS

GROUND MOTIONS

BUILDINGS ANALYZED

- Analyzed 20 concrete frame buildings
- Representative of modern and older buildings
- Varying ductility due to design/detailing differences
- Varying height (1 to 20 stories)

NONLINEAR SIMULATION MODELS

NONLINEAR ANALYSIS

Goal: To predict structural collapse response as a function of ground motion intensity and duration

S_{di} used as ground motion intensity measure based on bilinear oscillator

TRENDS BETWEEN COLLAPSE CAPACITY AND DURATION

TRENDS BETWEEN COLLAPSE CAPACITY AND DURATION

REGRESSION MODEL

COLLAPSE FRAGILITY CURVES

COLLAPSE FRAGILITY CURVES

March 22, 2012

EFFECTS OF LONG-DURATION SHAKING ON BUILDING COLLAPSE RISK

QUESTIONS?

Acknowledgments: Funding for this study comes from the USGS external grants program.

Conclusions and findings do not necessarily represent U.S. government policies.