Approach for Computing Long Period Sa

Use 3-D Numerical Models
Application: Urban Areas
End Product
Long Period S_a Maps

Next Generation Seismic Codes

Two Seismic Hazard Analysis (SHA) Approaches in ASCE 7-05

1. General Procedure - Ch. 11

T_L Map in ASCE 7

Modeling Regional Effects on Long Period Motions

NGA Equations with Basin Depth Terms

- Abrahamson & Silva Z1.0
- Campbell & Bozorgnia Z2.5
- Chiou & Youngs Z1.0

M 7.8 San Andreas Earthquake Simulations

M 7.8 San Andreas Earthquake Simulations

Recommendation

- Conduct pilot study for L.A. Basin
- Objective Generate Long-Period Ground– Motion Maps per PSHA/DSHA Procedures in Ch. 21, ASCE 7-10
- Substitute Simulations for GMPEs

Approach

- 1. Identify faults
- 2. Perform simulations

3-comp. accelerograms

response spectra, S_a (T)

median $S_a(T)$

- 3. Select σ_{ln}
- 4. Proceed with PSHA/DSHA

PSHA for Fault i, Magnitude j

Simulated
$$S_a(T) \rightarrow P_i (S_a > A I M_j)$$

$$V_{ij} = Rate/yr of M_j on Fault i$$

$$V_{ij} \cdot P_i (S_a \ge A I M_j)$$

Rate/yr of $S_a \ge A$ for Fault i & M_j

Total Ground-Motion Hazard

$$\sum_{\text{all Mj}} V_{ij} \cdot P_i(S_a \ge A I M_j)$$

$$\sum_{\substack{\text{all} \\ \text{faults}}} \sum_{\text{all Mj}} V_{ij} \cdot P_i(S_a \ge A \mid M_j)$$

Total Rate/yr of $S_a \ge A$

L.A. Pilot Study End Poducts

Contour Maps of $S_a(T)$

for

Selected T in $\sim 3 \le T \le 10$ sec range

Los Angeles Region Hazard Map, 2% in 50-yr SA (3 sec) Graves et al. (2010) Simulations

Los Angeles Region Hazard Map, 2% in 50-yr SA (3 sec) Campbell & Bozorgnia (2008) NGA eqn.

Contoured Residuals

MCE Response Spectra, Site X, L.A. Pilot Study

Probabilistic Seismic Hazard Maps for Seattle: 3D Sedimentary Basin Effects, Nonlinear Site Response, and Uncertainties from Random Velocity Variations

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Presentation for 4th IASPEI/ IAEE International Symposium on the Effects of Surface Geology on Seismic Motion

