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Issues

PEER-NGA process resulted in comprehensive
database and model building for active-
region shallow crustal GMPEs

By contrast, relatively sparser body of recent
publications on subduction GMPEs (and less
organization of databases, though there are
lots of data)

The subduction GMPEs are just as important
for hazard assessment - so how to proceed?

Note we need to define not just median
GMPEs, but also their epistemic uncertainty



Proposed Principles

e Alternative published or peer-reviewed
GMPEs are useful to assess uncertainty

e But uncertainty is not necessarily well

captured by simply weighting alternative
GMPEs

e We aim instead to use alternative GMPEs
and their data constraints to guide
selection of a “representative” or base-
model GMPE and bounding (low, high)
equations
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In-slab events: typical GMPEs show apparently
wide spread of motions for M~7 (h~50 km) - but
site conditions are not equivalent for all GMPEs

GMPEs far B/C, M=7.0
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Modifications suggested to subduction
GMPEs based mostly on Japan data

Most recent subduction GMPEs dominated by
plentiful Japanese data

Typical site conditions shallow soil over hard
rock

Typical amplifications of >5 at frequencies of
5 to 10 Hz (as seen in studies of Tohoku and
other events)

Expected site amplification in PNW is greater
at low frequency, less at high frequency

Japan-dominated GMPEs should be adjusted
for site conditions before application to PNW
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Atkinson&Casey factors based on QW calcs for typical
profiles. Atkinson&Boore factors based on regression
residuals for Cascadia and Japan relative to global GMPE.

Table: =™ |[Cascadia/Japan site factors:

- Recommended Cascadia
Freq. Atkinson Atkinson Multiplicative Factor
(Hz) &Casey &Boore (log)

1 (0.000 log units)
1.23 1.20 (0.079 log units)
- 0.5 1.47 1.55 1.51 (0.179)
1.08 1.00 1.04 (0.017)
1.16 0.83 1.00 (0.000)
0.81 (-0.091)
5] 0.71 0.50 0.60 (-0.222)
0.53 0.35 0.44 (-0.357)
0.35 0.44 (-0.357)
PGA 0.45 0.50 (-0.301)
PGV 1.00 (0.000)



ABO3 and Z06 look very similar for in-slab M7 after
site correction - and not unreasonable relative to
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Proposed in-slab GMPEs

e Use Zhao et al., 2006, corrected to
Cascadia site conditions

e Define epistemic uncertainty as ~0.15
log units, based on inspection of plot
of other GMPEs

e In-slab GMPEs of Zhao need to be
capped at large M (>7.5) but this does
not affect Cascadia (will return to
capping in a bit)
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Interface GMPEs

e Great new data from Tohoku, will talk
about that in more detail later

e Points to importance of site effects in
evaluating GMPEs

e Will look at pre-Tohoku GMPEs,
adjusted to Cascadia site conditions as
per the in-slab equations
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Epistemic uncertainty In
interface GMPEs

e Pick representative GMPE with proper
scaling behaviour and reasonable
agreement with recent event data like

Tohoku

e eg Atkinson&Macias, 2009 Cascadia
GMPE

e Use data and other GMPEs to define
epistemic uncertainty ~ 0.2 log10 units?
(should be greater than for crustal
events)
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Capping subduction-zone
equations at large magnitudes

e Data are sparse for large-magnitude
subduction events in GMPEs (pre-date
Tohoku)

e Need to evaluate scaling behavior of
GMPEs and ensure the%/ make sense, for
both in-slab and interface events

e Motions that grow too much at large
ma%nitudes can be treated by “capping’
GMPEs at an upper-bound magnitude

e This is more of an issue for some GMPEs
than others
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Conclusions

e Not all GMPEs created equal

e Need to consider representative site
conditions

e Need to evaluate magnitude scaling
and other issues in candidate GMPEs

e Need to evaluate epistemic uncertainty
in a broader context - don’t just
throw a random collection of weighted
GMPEs into a basket



