

Estimation of Uncertainty in Hazard for IMW

Nilesh Shome Risk Management Solutions

Objective

- Typically we estimate the mean hazard curve.
- In addition, we plan to estimate the epistemic uncertainty in the hazard.

© 2012 Risk Management Solutions, Inc.

Importance of Estimating Uncertainty in Hazard

Improve the decision making process from building design to insurance rate.

Risk coefficient for building design

Loss estimation for PEER tall building design guideline

Logic-Tree Branch

Although some of the logic-tree branches may not be important for mean-hazard calculations, those can be important in uncertainty calculations.

Uncertainty in Fault Model

- Fault location ??
- Fault Geometry
 - Proposed 50±15 dip
 - Length and width of fault ??
- Faulting style ??

Uncertainty in Magnitude and Magnitude-Area Relationship

- Magnitude uncertainty: ±0.2
- Magnitude area relationship
 - Wells and Coppersmith
 - Sterling and Others

Uncertainty in Recurrence

- Mean recurrence rate??
- Slip rate ??
- Recurrence model: time-independent and time-dependent model ??
- Time-dependent model: uncertainty in aperiodicity ??

Focusing on Parameters Having High Influence on the Hazard

FM: Fault Model

DM: Deformation Model

ERM: EQ Rate Model

GM: Ground-Motion Model

