
Review of BRPEWG geology 
recommendations




• Uncertainty in source dip

• Characterization of source maximum 

M

• Slip-rate uncertainty

• Modeling antithetic sources




• Characterize the M-frequency 
distribution appropriately


• Test prediction by comparing the 
paleoseismic record to the model




Dip uncertainty of normal 
sources in the IMW
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Discussion topics

• Does the group still recommend that 

the assigned dip of normal sources in 
the IMW should be 50±15°?


•  If so, should 40° and 60° dips be 
retained in the logic tree?




Implications on hazard at a site 
by broadening dip uncertainty


• Change in mean seismic moment rate  
[1/sin(dip)]2  
 




• Change in distance  
to rupture plane
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Historical normal-faulting 
earthquakes
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from Jackson and  White, 1989
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Source of dip attributed to 
historical normal fault
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Location of historical normal-
faulting earthquake
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2008 annual frequency of full 
and partial ruptures


•  Carson Range-Kings 
Canyon source


Full-source rupture

Floating partial rupture

2008 model w 2/3 full 1/3 partial




65-degree dipping sources

Carson Range-Kings Canyon source 
0.3s SA 2% PE in 50 yr


Salt Lake City segment and West Valley 
sources 0.3s SA 2% PE in 50 yr


Maximum SA = 1.1-1.40
Maximum SA = 1.15-1.37




60-degree dipping sources

Carson Range-Kings Canyon source 
0.3s SA 2% PE in 50 yr


Salt Lake City segment and West Valley 
sources 0.3s SA 2% PE in 50 yr


Maximum SA = 1.10-1.40
Maximum SA = 1.63-1.94




50-degree dipping sources

Carson Range-Kings Canyon source 
0.3s SA 2% PE in 50 yr


Salt Lake City segment and West Valley 
sources 0.3s SA 2% PE in 50 yr


Maximum SA = 1.10-1.40
Maximum SA = 1.63-1.94




40-degree dipping sources

Carson Range-Kings Canyon source 
0.3s SA 2% PE in 50 yr


Salt Lake City segment and West Valley 
sources 0.3s SA 2% PE in 50 yr


Maximum SA = 1.10-1.40
Maximum SA = 2.31-2.75




35-degree dipping sources

Carson Range-Kings Canyon source 
0.3s SA 2% PE in 50 yr


Salt Lake City segment and West Valley 
sources 0.3s SA 2% PE in 50 yr


Maximum SA = 1.10-1.40
Maximum SA = 2.31-2.75




Summary

• For slip rate constrained sources, 

increase mean seismic moment rate as 
[1/sin(dip)]2


• No similar change in rate for sources 
with fixed return times


• Hazard at Ssites above the fault are 
sensitive to distance to rupture 


• How do alternative M-frequency fit the 
paleoseismic record?




Possible dip distributions for 
normal sources
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Analysis of scaling relations to 
constrain maximum M for 
fault sources in the IMW




Outline

• Compare M-scaling relations for 

normal sources and their respective 
uncertainties


• Compare M-scaling relations for 
strike-slip sources


• Characterize the distribution of M in 
the IMW
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BRPEWGII recommendation

•  There are significant epistemic 

uncertainties in determining Mmax 
[maximum source M] for BRP normal 
faults due to possible scaling differences 
for the low-strain rate environment, 
normal slip earthquakes, and larger 
events. To better address these 
uncertainties, consider using multiple 
regression relations from the following 
list to determine Mmax for BRP faults in 
the NSHMs:




Scaling relations

• Wells and Coppersmith (1994)  

M = (5.08±0.01)+(1.16±0.07)*log(SRL) for all fault types 
M = (4.07±0.06)+(0.98±0.03)*log(RA) for all fault types 
M = (4.86±0.34)+(1.32±0.26)*log(SRL) for normal faults 
M = (3.93±0.23)+(1.02±0.1)*log(RA) for normal faults


• Anderson et al. (1996)  
M = (5.12±0.12)+(1.16±0.07)*log(SRL)-0.2*log(SR)


• Stirling et al. (2002) – censored 
instrumental (table 2)  
M = (5.88±0.17)+(0.8±0.1)*log(SRL)  
M = (5.09±0.21)+(0.73±0.07)*log(RA)




Comparison of recommended 
scaling relations
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Compare recommended scaling 
relations to WC94_SRL_All


6


6.2


6.4


6.6


6.8


7


7.2


7.4


7.6


7.8


8


6
 6.2
 6.4
 6.6
 6.8
 7
 7.2
 7.4
 7.6
 7.8
 8

WC94_ALL_SRL M


WC94_AREA_All


WC94_SRL_N


SRB02_SRL


SRB02_AREA


unity




Compare recommended scaling 
relations to WC94_SRL_All
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• Under estimate of M “will result in 
more numerous, smaller-magnitude 
earthquakes. This in turn will lead to 
correspondingly—and erroneously—
higher mean annual rates of 
occurrence” for predicted earthquakes.  
__Hanks and Bakun (2002)
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•  SRL = 53.2 km

•  vertical SR = 2 mm/yr  

(dip SR = 2.2-3.5mm/yr)

•  Assigned M7.08

•  Mean M7.11 




West Spring Mountains source
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•  SRL = 52.8 km

•  vertical SR = 0.06 mm/yr  

(dip SR = 0.07-0.1 mm/yr)

•  Assigned M7.08

•  Mean M7.17 
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•  SRL = 32.0 km

•  vertical SR = 0.6 mm/yr  

(dip SR = 0.7-1.0 mm/yr)

•  Assigned M6.83

•  Mean M6.91


GSL, Fremont Island source




Canones M_char
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•  SRL = 30.7 km

•  vertical SR = 0.02 mm/yr  

(dip SR = 0.02-0.03 mm/yr)

•  Assigned M6.80

•  Mean M6.97 




Centennial M_char
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•  SRL = 64.0 km

•  vertical SR = 0.9 mm/yr  

(dip SR = 1.0-1.6 mm/yr)

•  Assigned M7.18

•  Mean M7.20 




Oquirrh-Southern Oquirrh 
Mountains
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•  SRL = 63.5 km

•  vertical SR = 0.2 mm/yr  

(dip SR = 0.2-0.3 mm/yr)

•  Assigned M7.17

•  Mean M7.23




Aubrey M_char
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•  SRL = 64.5 km

•  vertical SR = 0.018 mm/yr  

(dip SR = 0.02-0.03 mm/yr)

•  Assigned M7.18

•  Mean M7.28
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•  Alternative relations yield larger M than WC94 relations

•  All M-area and Anderson et al. (1996) scaling relations are 

sensitive to source dip

•  Anderson et al. (1996) indicates larger M for slower slip faults




Summary




BRPEWGII recommendation

• Use the same approach for 

determining Mmax for strike-slip 
faults in the BRP as is used for strike-
slip faults in California (Petersen and 
others, 2008). 




M-scaling IMW strike-slip 
sources 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BRPEWGII recommendation

• Consider segmented or other 

alternative rupture models where 
paleoseismic studies provide good 
evidence for differences in rupture 
patterns and behavior along a fault 
(e.g., West Cache, Steens, Lost River, 
Lemhi, Mission, Sangre de Cristo, and 
others).




May 03 1887 Sonora Mexico 
earthquake


•  ~M7.4

•  102 km rupture 

•  Three mapped 

faults

•  Maximum rupture 

jump ~15 km




October 3 1915 Pleasant Valley 
Nevada earthquake


•  ~M7.1

•  68 km rupture 

•  Four echelon 

surface ruptures

•  Maximum rupture 

jump 6 km




October 3 1915 Pleasant Valley 
Nevada earthquake


•  ~M7.1

•  68 km rupture 

•  Four echelon 

surface ruptures

•  Maximum rupture 

jump 6 km




August 18 1959 Hebgen Lake 
Montana earthquake


•  M7.3

•  25 km rupture 

•  Three major 

echelon surface 
ruptures


•  Maximum rupture 
jump 2 km




October 28 1983 Borah Peak 
Idaho earthquake


•  M6.9

•  34 km rupture 

•  Three mapped fault 

segments

•  Maximum rupture 

jump 2 km




Carson Range-Kings Canyon 
source
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Discussion topics

• Does the group still recommend that 

the assigned dip of normal sources in 
the IMW should be 50±15°?


•  If so, should 40° and 60° dips be 
retained in the logic tree?


• What M-scaling relations are 
important to include in the 2014 
model?


• Slip-rate uncertainty
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Modeled sources that 
intersect at depth




15 KM

•  Salt Lake City


•  Las Vegas


•  Cache Valley




15 KM

•  3 dip alternatives 
yield up to 9 
possible branches


•  5 dip alternatives 
yields up to 25 
possible branches


•  50 possible 
branches if master 
fault cannot be 
identified




2008 model for  
Cache Valley, Utah




2008 model E Cache (master) W 
Cache (subsidiary)


PGA 2% PE in 50 yr

2008 model/truncated W 
Cache PGA ratio map




PGA Ratio map of W Cache (master) 
central E Cache (subsidiary)




Fault characteristics

MRE
 Vertical 

slip rate
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M
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