

InterMountain West Region

- Includes all or part of 12 states
- Spans several distinct geological provinces
- Largely dominated by extensional deformation
- Focus on highest short-term hazard:

Wasatch Front

Eastern margin of Sierra Nevada

USGS Earthquake Hazards Program

National Earthquake Hazards Reduction Program (NEHRP) (Established 1977)

National Science Foundation (NSF) U.S. Geological Survey (USGS) Federal Emergency Mgmt. Agency (FEMA) National Institute Standards & Tech. (NIST)

USGS Earthquake Hazards Program (EHP)

Internal USGS Projects (IMW project) (NSHM project) EHP External Grants Program
(Non-USGS PIs)
(Elizabeth Lemersal: manager)

EHP Regional Coordinators
A.J. Crone: IMW region
M.D. Petersen: National region

Wasatch Front, Utah

Focus on: Development of Urban Hazard Maps

Wasatch Front time-dependent probability assessment

- a.) Community Velocity Model (CVM) for Salt Lake Valley (SLV).

 CVM: unified subsurface velocity model needed to simulate ground motions in SLV.
- b.) Simulations include effects of different source locations, basin velocity structure, and amplification effects. Elements of models include: soil classes, basin geometry, basin-sediment interfaces, crustal tomography, and Moho effects.

Wasatch Front, Utah

New paleoseismic data on the five central segments of the Wasatch fault zone (WFZ) since 2002.

Northern Wasatch Sites:

Brigham City segment:

Hansen Canyon

Kotter Canyon

Pearsons Canyon (north)

Weber Segment:

Rice Creek

Salt Lake City segment:

Penrose Drive site (East Bench

fault)

Baileys Lake site (West Valley fault zone)

Wasatch Front, Utah

New paleoseismic data on the five central segments of the Wasatch fault zone (WFZ) since 2002.

Southern Wasatch Sites:

Provo segment:

Mapleton mega-trench

Nephi Segment:

Spring Lake North site*

Santaquin site

North Creek site*

Willow Creek site

TStudies in progress

Wasatch Front, Utah

Wasatch fault zone rupture model

New and legacy paleoseismic data led to:

- a.) refined earthquake chronologies
- b.) new models of rupture sequences and scenarios
- c.) updated geological slip-rate and recurrence estimates

Much of the data from the Urban Hazard mapping and the Earthquake Probability efforts also contribute to updates of National Seismic Hazard maps.

Reno-Carson City Corridor, Nevada

Longer-term IMW goal: develop Urban Hazard maps for Reno-Carson City (RCC) urban corridor.

Initial stages of collecting and organizing data needed to develop CVM.

IMW Research Activities and Goals Reno-Carson City Corridor, Nevada

Challenges:

- a.) Information on seismic sources (faults) poorly known.
- b.) Shallow, high-resolution reflection data in urban Reno has identified previously unrecognized faults beneath city.
- c.) Style and complexity of deformation more difficult to decipher compared to the Wasatch Front.

Reflection profile along Truckee River bike path, Reno

IMW Research Activities and Goals Reno area fault investigations Mt. Rose piedmont fault zone, South Reno

IMW Research Activities and Goals Carson City fault investigations

Kings Canyon fault zone, Carson City

View to SW, Joost Ranch scarp, Kings Canyon fault zone

Nevada Geodesy (MAGNET--Mobile Array of GPS for Nevada Transtension)

From Hammond and others, J. Geophys. Res., 2011

Western Nevada deformation: combination of extension and NW-directed shear related to motion along North America-Pacific plate boundary.

Geodetic data indicate about 6-7 mm/yr of dextral shear across Northern Walker Lane (NWL).

Northern Walker Lane (NWL) Investigations

Key late Quaternary faults in NWL include Mohawk Valley, Sierra Valley, Honey Lake, and Warm Springs Valley.

USGS has collected high-quality LiDAR data across selected parts of the faults.

Data available at: http://www.opentopography.org

Goal of studies: Obtain geological data to characterize long-term (geologic) rates vs short-term (geodetic) rates

Northern Walker Lane (NWL) Investigations

Fort Sage fan site

High-resolution LiDAR yields improved maps of fault traces.

Combination of surficial mapping, geochronology, and trenching are being used to determine long-term (geologic) slip rates for faults.

Northern Walker Lane (NWL) Investigations

Resolution of LiDAR permits detailed measurements of lateral offsets.

Selected Additional IMW Studies

Utah: Utah Lake faults

SLC ground motion modeling

Washington fault earthquake history

Weber County lateral-spread ground-failure maps

Nevada/Calif: Mohawk Valley and Honey Lake GPS

Genoa fault earthquake history

Mt. Rose fault zone imaging

Mogul earthquake extreme ground motions

West Tahoe fault studies

New Mexico: Albuquerque shear-wave analysis

Hubble Springs fault (Albuquerque area), NM

Why do we need hazard maps?

Wasatch fault, American Fork Canyon 2011

