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Motivation 

There are a number of ways in which one can define the “response 

spectrum” of a multicomponent ground motion 

 

Traditionally:  SaGeoMean 

NGA-West:  SaGMRotI50 

NGA-West2:  SaRotD50 

ASCE 7:  SaRotD100 

 

I will discuss results allowing one can relate these values to each other 
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Measuring single-orientation (pseudo) response spectra 
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Measuring direction-dependent response spectra 
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Measuring direction-dependent response spectra 

Gilroy Array #6, 1984 Morgan Hill 
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Example 1-second oscillator responses  

to multi-component motions 

HWA031, 1999 Chi-Chi-04 Gilroy Array #6, 1984 Morgan Hill 
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Ground motion model for SaRotD100 at a specified period 
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Independent of primary GMPE 
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Histograms of SaRotD100/SaRotD50  

T = 0.2 s T = 1.0 s 
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Results from subsets of the NGA -West2 

data chosen by the modelers  

(Abrahamson-Silva  data shown here) 
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Impacts of switching definitions 
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Geomean SaRotD100/SaGMRotI50 ratios, versus previous models  

Clear period dependence.  All models are consistent. 

Shahi Baker 2012 
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Variation in SaRotD100/SaGMRotI50 with closest distance (Rrup)? 

T = 0.2 s T = 1 s 

Other variables (M, directivity parameters) had less strong effects 

Rrup (km) Rrup (km) 

Rrup 
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Model with Rrup dependence 
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Standard deviations (example numbers for Sa(1s)) 
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This study Primary GMPE 
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Shahi and Baker study: 
Campbell Bozorgnia  

(2008) NGA: 

σ = 0.623 σ’ = 0.629 
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Conclusions 

 

• Models are available for conversion between all popular Sa definitions, 

including the SaRotD50 adopted by new models 

 

• Ratios of SaRotD100 / SaRotD50 from NGA-West2 data are consistent with 

previous studies 

– Dependent on period and (weakly) on distance 

– No clear dependence on other properties (magnitude, directivity-related parameters) 

– Standard deviations are small relative to standard deviations of SaRotD50  

 

• The above properties imply that one can accurately convert from SaRotD50 to 

SaRotD100 after SaRotD50 hazard analysis has been performed 



 15 
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These ratios differ from the NEHRP Provisions ratios 

NEHRP (2009): 

• 0.2s  1.1 

• 1.0s  1.3 

 

Shahi and Baker (2012) 

• 0.2s  1.2 

• 1.0s  1.25 

 

Differences due to  

• change of Sa definition 

• change of estimation procedure 
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Data set 

 

• NGA-West2 database  

 

• We used subsets of the data 

chosen by the modelers (as of 

11/1/2011), to ensure use of 

appropriate data and to be 

compatible with NGA West 2 

models for SaRotD50  

 

• Sa values computed for 

– 5% damping only 

– 21 periods 

– All orientations in 1º 

increments 
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Results to discuss today 

 

• SaRotD100 /SaRotD50 ratios  

 

• Orientation of SaRotD100 relative 

to strike  

 

• Difference in orientation of 

SaRotD100(T1) and SaRotD100(T2) 

 

• Change in Sa(T) at angles away 

from the SaRotD100 orientation 

 

• Amplitude of Sa(T) in a specified 

direction  

 

T’ = 3 s 

T* = 1.5 s 

Oscillator responses to 1979 Imperial Valley-06,  

El Centro Differential Array recording 
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Orientation of SaRotD100 (using α as angle to strike parallel) 

Site 

Fault rupture 

a 
Strike parallel  

orientation 

• Dependence of a on various 

parameters was studied 

 

• A parametric model to predict the 

distribution of a is proposed 

Oscillator responses to 1979 Imperial Valley-06,  

El Centro Differential Array recording 

T’ = 3 s 

T* = 1.5 s 
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Dependence of a on M and Rrup 

Rrup bins 
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Distribution of a for varying T, with Rrup between 0 and 5 km 

Apparent division at 0.5 or 1 second 
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Observations regarding distributions of a  

 

Some dependence on distance and period (consistent with previous work) 

 

– The distribution tends towards fault normal for R < 5 km and T ≥ 0.5 s 

 (This is not the same as saying a is always fault normal) 

 

– The distribution is apparently uniform otherwise 

 

 

 

No obvious dependence on magnitude, directivity parameters, etc. 
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Other models for directionality 

a 

The direction of SaRotD100(T) will 

vary with period 

 

 

1. By how much will the azimuths 

of SaRotD100(T*)  and SaRotD100(T’)  

vary? 

 

2. If we identify a target SaRotD100 

at one period (T*), what will the 

spectral value be at some other 

period (T’)? 

 

T’ = 3 s 

T* = 1.5 s 

Oscillator responses to 1979 Imperial Valley-06,  

El Centro Differential Array recording 
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Distribution of a*-a’ for various T* and T’ 

T* = 1 s, T’ = 2 s T* = 0.1 s, T’ = 0.2 s 

T* = 1 s, T’ = 5 s T* = 0.1 s, T’ = 0.5 s 
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Median ratio of Saφ/SaRotD50, as a function of  

distance from SaRotD100 orientation 
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Example 1s response case: 

φ  = Angle relative to SaRotD100 (degrees) 
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Individual ground motion example 

TCU076 station, 1999 Chi-Chi earthquake  

Rrup = 3 km,  M = 7.6 
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Example predictions using above results 

M = 7, Rclst = 2.5 km, VS30 = 760 m/s 
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Fault normal spectra versus SaRotD50  
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Is SaRotD100 = SaFN for directivity ground motions? 

 

 

• Each ground motion in the NGA West 2 database classified as pulse or 

non-pulse 

– Improved pulse-classification algorithm (Shahi and Baker) 

– Documentation in progress 

 

 

• Source-site geometry used to manually identify Pulse-like ground motions 

caused by directivity 
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SaRotD100 orientation for directivity ground motions 

Data pooled from 21 periods 
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SaRotD100 orientation for directivity ground motions 

Data for period closest to Tp 
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Effect of Chi-Chi 
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Effect of changing the dataset 
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Any variation in this ratio with distance (M)? 

T = 7.5 s T = 3 s 

T = 0.1 s T = 1 s 
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Any variation in this ratio with s? (Strike slip only) 

T = 7.5 s T = 3 s 

T = 0.1 s T = 1 s 
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Any variation in this ratio with ? (Strike slip only) 

T = 0.1 s T = 1 s 

T = 3 s T = 7.5 s 
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Any variation in this ratio with D? (Non-strike-slip only) 

T = 7.5 s T = 3 s 

T = 0.1 s T = 1 s 
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Regression analysis to evaluate significance of above parameters 

 

• Both forward and backward step-wise regression was used to select 

statistically significant parameters 

 

• Some dependence on M and R (depends upon period) 

 

• Some dependence on directivity parameters at higher periods 

 

• Our recommendation : a simple model dependent on R only 
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Distribution of a for different M-R bins 

T = 1 s 

Distance range (km) 
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Distribution of a for different M-R bins 

Data pooled from all periods 
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Distribution of a for different R bins 

Data pooled from all periods 

Distance range (km) 
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Models for a? Two options: 

1. Parametric model for distribution of a (i.e., equation for a probability 

distribution) 

– Linearly-varying distribution of a for R < 5 km (function of T) 

– Uniform distribution for R > 5 km 

 

2. Just report histogram values at different T for R < 5 km 

– Simpler, but hard to do calculations with 

 

R < 5 km, T = 0.1s R < 5 km, T = 7.5s 
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Direction of RotD100 with  

T = 3 s 

T = 0.1 s T = 1 s 

T = 7.5 s 
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Zooming in towards high  

T = 3 s 

T = 0.1 s T = 1 s 

T = 7.5 s 
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Only records with high amplification 

T = 3 s 

T = 0.1 s T = 1 s 

T = 7.5 s 
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• When  is high some Sa,RotD100 values are found in fault parallel orientation. 

This may be due to the radiation patterns 

 

•  Due to low sample size and presence of randomness we cant make 

confident conclusions. 
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Distribution of a*-a’ for different T*,T’ 

T* = 1 s, T’ = 2 s T* = 0.1 s, T’ = 0.2 s 

T* = 1 s, T’ = 5 s T* = 0.1 s, T’ = 0.5 s 
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Median ratio of Sa(Φ)/SaRotD50, as a function of  

distance from SaRotD100 orientation 


