Directionality Issues

Jack W. Baker and Shrey K. Shahi Stanford University

Motivation

There are a number of ways in which one can define the "response spectrum" of a multicomponent ground motion

Traditionally: Sa_{GeoMean}

NGA-West: Sa_{GMRotl50}

NGA-West2: Sa_{RotD50}

ASCE 7: Sa_{RotD100}

I will discuss results allowing one can relate these values to each other

Measuring single-orientation (pseudo) response spectra

Measuring direction-dependent response spectra

Measuring direction-dependent response spectra

$$Sa_{GeoMean}(T) = \sqrt{Sa_X(T)^2 + Sa_Y(T)^2}$$

$$Sa_{RotD100}(T) = \max_{q} \left[Sa(q,T) \right]$$

$$Sa_{RotD50}(T) = \underset{q}{\text{median}} [Sa(q,T)]$$

$$Sa_{GMRotI50}(T) = \dots$$

Gilroy Array #6, 1984 Morgan Hill

Example 1-second oscillator responses to multi-component motions

Sa(θ, Is) / Sa_{RotD100}(Is)
 Displacement / Maximum displacement

HWA031, 1999 Chi-Chi-04

Gilroy Array #6, 1984 Morgan Hill

Ground motion model for Sa_{RotD100} at a specified period

$$Sa_{RotD100} = \frac{Sa_{RotD100}}{Sa_{RotD50}} Sa_{RotD50}$$

$$\ln Sa_{RotD100} = \ln(Sa_{RotD100} / Sa_{RotD50}) + \ln(Sa_{RotD50})$$

"Max direction factor" Primary GMPE

$$\ln(Sa_{RotD100} / Sa_{RotD50}) = \frac{a}{4} + \eta' + \varepsilon$$

Simple prediction (constant?)

 $\ln(Sa_{RotD100} / Sa_{RotD50}) = \underbrace{a + \eta' + \varepsilon'} \qquad \ln(Sa_{RotD50}) = \underbrace{f(M, R, V_{S30}, \dots) + \eta + \varepsilon}$

Complex prediction

Independent of primary GMPE

Histograms of Sa_{RotD100}/Sa_{RotD50}

Results from subsets of the NGA -West2 data chosen by the modelers (Abrahamson-Silva data shown here)

Impacts of switching definitions

Geomean Sa_{RotD100}/Sa_{GMRotI50} ratios, versus previous models

Variation in Sa_{RotD100}/Sa_{GMRotl50} with closest distance (R_{rup})?

Other variables (M, directivity parameters) had less strong effects

Model with R_{rup} dependence

Standard deviations (example numbers for Sa(Is))

$$\ln Sa_{RotD100} = \ln(Sa_{RotD100} / Sa_{RotD50}) + \ln(Sa_{RotD50})$$

$$= \ln(Sa_{RotD100} / Sa_{RotD50}) + \ln(Sa_{RotD50})$$
This study Primary GMPE
$$\ln(Sa_{RotD100} / Sa_{RotD50}) = a + \eta' + \varepsilon' \qquad \ln(Sa_{RotD50}) = f(M, R, V_{S30}, ...) + \eta + \varepsilon$$
Shahi and Baker study: Campbell Bozorgnia (2008) NGA:

Conclusions

- Models are available for conversion between all popular Sa definitions, including the Sa_{RotD50} adopted by new models
- Ratios of $Sa_{RotD100}$ / Sa_{RotD50} from NGA-West2 data are consistent with previous studies
 - Dependent on period and (weakly) on distance
 - No clear dependence on other properties (magnitude, directivity-related parameters)
 - Standard deviations are small relative to standard deviations of Sa_{RotD50}
- The above properties imply that one can accurately convert from Sa_{RotD50} to $Sa_{RotD100}$ after Sa_{RotD50} hazard analysis has been performed

These ratios differ from the NEHRP Provisions ratios

NEHRP (2009):

- $0.2s \rightarrow 1.1$
- $1.0s \to 1.3$

Shahi and Baker (2012)

- $0.2s \to 1.2$
- $1.0s \rightarrow 1.25$

Differences due to

- change of Sa definition
- change of estimation procedure

Data set

- NGA-West2 database
- We used subsets of the data chosen by the modelers (as of II/I/20II), to ensure use of appropriate data and to be compatible with NGA West 2 models for Sa_{RotD50}
- Sa values computed for
 - 5% damping only
 - 21 periods
 - All orientations in 1° increments

Results to discuss today

- $Sa_{RotD100}$ / Sa_{RotD50} ratios
- Orientation of Sa_{RotD100} relative to strike
- Difference in orientation of Sa_{RotD100}(T₁) and Sa_{RotD100}(T₂)
- Change in Sa(T) at angles away from the Sa_{RotD100} orientation
- Amplitude of Sa(T) in a specified direction

Oscillator responses to 1979 Imperial Valley-06, El Centro Differential Array recording

Orientation of $Sa_{RotD100}$ (using α as angle to strike parallel)

- Dependence of α on various parameters was studied
- A parametric model to predict the distribution of α is proposed

Oscillator responses to 1979 Imperial Valley-06, El Centro Differential Array recording

Dependence of α on M and R_{rup}

Distribution of α for varying T, with R_{rup} between 0 and 5 km

Apparent division at 0.5 or I second

Observations regarding distributions of α

Some dependence on distance and period (consistent with previous work)

- The distribution tends towards fault normal for R < 5 km and $T \ge 0.5$ s (This is not the same as saying α is always fault normal)
- The distribution is apparently uniform otherwise

No obvious dependence on magnitude, directivity parameters, etc.

Other models for directionality

The direction of $Sa_{RotD100}(T)$ will vary with period

- I. By how much will the azimuths of $Sa_{RotD100}(T^*)$ and $Sa_{RotD100}(T')$ vary?
- 2. If we identify a target Sa_{RotD100} at one period (T*), what will the spectral value be at some other period (T')?

Oscillator responses to 1979 Imperial Valley-06, El Centro Differential Array recording

Distribution of α^* - α' for various T* and T'

Median ratio of Sa_{ϕ}/Sa_{RotD50} , as a function of distance from $Sa_{RotD100}$ orientation

Example 1s response case:

Individual ground motion example

Example predictions using above results

$$M = 7$$
, $R_{clst} = 2.5$ km, $V_{S30} = 760$ m/s

Thanks to the project technical review team:

- Brian Chiou
- Nicolas Luco
- Mahmoud Hachem
- Tom Shantz
- Paul Somerville
- Paul Spudich
- Jon Stewart
- Badie Rowshandel

Fault normal spectra versus Sa_{RotD50}

Is $Sa_{RotD100} = Sa_{FN}$ for directivity ground motions?

- Each ground motion in the NGA West 2 database classified as pulse or non-pulse
 - Improved pulse-classification algorithm (Shahi and Baker)
 - Documentation in progress

 Source-site geometry used to manually identify Pulse-like ground motions caused by directivity

Sa_{RotD100} orientation for directivity ground motions

Sa_{RotD100} orientation for directivity ground motions

Effect of Chi-Chi

Effect of changing the dataset

Any variation in this ratio with distance (M)?

Any variation in this ratio with s? (Strike slip only)

Any variation in this ratio with θ ? (Strike slip only)

Any variation in this ratio with D? (Non-strike-slip only)

Regression analysis to evaluate significance of above parameters

- Both forward and backward step-wise regression was used to select statistically significant parameters
- Some dependence on M and R (depends upon period)
- Some dependence on directivity parameters at higher periods
- Our recommendation : a simple model dependent on R only

Distribution of α for different M-R bins

T = I s

Distribution of α for different M-R bins

Data pooled from all periods

Distribution of α for different R bins

Data pooled from all periods

Models for α ? Two options:

- I. Parametric model for distribution of α (i.e., equation for a probability distribution)
 - Linearly-varying distribution of α for R < 5 km (function of T)
 - Uniform distribution for R > 5 km
- 2. Just report histogram values at different T for R < 5 km
 - Simpler, but hard to do calculations with

Direction of RotD100 with θ

Zooming in towards high θ

Only records with high amplification

- When θ is high some $S_{a,RotD100}$ values are found in fault parallel orientation. This may be due to the radiation patterns
- Due to low sample size and presence of randomness we cant make confident conclusions.

Distribution of α^* - α' for different T*,T'

Median ratio of $Sa(\Phi)/Sa_{RotD50}$, as a function of distance from $Sa_{RotD100}$ orientation

