Hazard From Seismicity

C. Mueller NSHMP Workshop, Memphis, Feb 2012

USGS Methodology

Organizing Principles: CEUS sources

- 1) Specific faults
 - New Madrid, Charleston, Meers, Cheraw
 - recurrence from paleoseismology
- 2) Historical seismicity (gridded & smoothed)
 - future earthquakes will occur near past earthquakes
 - alternative to source zones
 - controls hazard in much of the CEUS
- 3) Large background zones based on geology
 - protection in areas with little historical seismicity, but the potential for damaging earthquakes

Implementation

- Catalog (m_b)
- Regional completeness & b
- Four "background" seismicity models:
 - 1) Model 1: rate of mag ≥ 3
 - 2) Model 2: rate of mag ≥ 4
 - 3) Model 3: rate of mag ≥ 5
 - 4) Model 4: regional "floor"
- Smoothing (2-D Gaussian): 50 km for M1, 75 km for M2 & M3
- Adjust rates for optimistic completeness
- Final rates: weighted sum of Models 1–4

Smoothed Seismicity:

Avoid judgments about the seismogenic potential of enigmatic tectonic features

Assume that future eqks will occur near past eqks

Why 3 Gridded Seismicity Models?

- The maximum-likelihood method counts a magnitude-5+ eqk the same as a small eqk
- In places where moderate-size eqks have occurred, but small eqks are under-represented (*e.g.*, the Nemaha Ridge), a single model may underestimate the hazard
- Can think of it like a localized, variable b value

Combining rate grids ("adaptive weighting")

- Define "historical" rate =
 (Model 1 x 0.50) + (Model 2 x 0.25) + (Model 3 x 0.25)
- If historical rate > background rate: final rate = historical
- Otherwise: final rate = historical x = 0.8 + background x = 0.2
- Implications:
 - If historical = 0, then final = 20% of the observed regional average rate
 - Nowhere is final < historical
 - Violates the CEUS historical seismicity budget by $\sim 10\%$

Hazard comparisons (seismicity only) &

Implications of possible switch to M_W

✓ NSHM m_b & CEUS-SSC M_W catalogs:

- 1700-2006, Gardner & Knopoff decluster
- Exclude Charlevoix & New Madrid
- Get unique completeness levels & b values for each

✓ For comparisons:

- One seismicity rate model for each catalog (not M1-4)
 - Use unique completeness & b
 - 50km smoothing
- Mmax: use NSHM 2008
- m_b : b = 0.945, m_b min = 5.0, " m_b " GMPEs
- M_W : b = 1.069, M_W min = 4.7 or 5.0, M_W GMPEs

Ratio of cumulative 10a: CEUS-SSC@M_W4.7 / NSHM@m_b5.0

2% probability of exceedance in 50 yrs

CEUS-SSC catalog, minimum magnitude = $M_w 4.7$

2% probability of exceedance in 50 yrs

CEUS-SSC $M_w min = 4.7 / NSHM m_b min = 5.0$

10% probability of exceedance in 50 yrs

CEUS-SSC $M_w min = 4.7 / NSHM m_b min = 5.0$

2% probability of exceedance in 50 yrs

CEUS-SSC
$$M_w min = 5.0 / NSHM m_b min = 5.0$$

(test $M_W min = 5.0$ instead of 4.7)

10% probability of exceedance in 50 yrs

CEUS-SSC
$$M_w min = 5.0 / NSHM m_b min = 5.0$$

(test $M_W min = 5.0$ instead of 4.7)

