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Figure 6.1.2-4 Postulated faults and tectonic features in the local Charleston area Fig 6.1.2-4
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CHARLESTON SOURCE, S.C.�
USGS AND CEUS SSC COMPARISON
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CHARLESTON PALEOLIQUEFACTION


Figure E-36  
GIS map of Charleston, South Carolina, region showing locations of historical and prehistoric liquefaction features. Map projection is USA 
Contiguous Albers Equal Area Conic, North America Datum 1983. 
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CEUS CHARLESTON �
SPACE-TIME DIAGRAM


Contemporary ages only
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Figure 6.1.2-7 Charleston space-time diagram of earthquakes interpreted from paleoliquefaction, contemporary-ages-only scenario

All ages
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Figure 6.1.2-8 Charleston space-time diagram of earthquakes interpreted from paleoliquefaction, all-ages scenario

Fig 6.1.2-8
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Fig 6.1.2-7




AGE UNCERTAINTY FOR CHARLESTON 
PALEOLIQUEFACTION
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Figure 6.1.2-19 Uncertainty distributions for the age of Charleston RLMEs 
Fig 6.1.2-19

CEUS SSC report


Data from Talwani and Schaeffer 2001




ANNUAL FREQUENCY OF MAXIMUM 
EARTHQUAKE, CHARLESTON SOURCES
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QUESTIONS


• Should the USGS modify their Broad and Narrow 
zones that were used in prior maps?


• Is the modeled 550 yr return time appropriate to 
use in the update?




WABASH VALLEY FAULT SYSTEM
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Figure 6.1.9-2 Map showing seismicity, subsurface structural features, paleoearthquake energy centers, and postulated neotectonic 
deformation in the Wabash Valley region of southern Illinois and southern Indiana

Fig 6.1.9.2
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RECENT WABASH REFERENCES
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WABASH PALEOEARTHQUAKES


Figure E-33 
GIS map of Wabash Valley region of Indiana and Illinois showing preferred age estimates and paleoearthquake interpretation. Map projection is 
USA Contiguous Albers Equal Area Conic, North America Datum 1983. 

Fig E-33
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MARIANNA ZONE, ARK.


•  geologic record of earthquake 
induced liquefaction older than 
NMSZ features


•  northwest-trending lineament 
defined by (1-4-m-wide) sand 
blows near Daytona Beach 
••possibly fault controlled 17 
km (M6.5)


•  3 or 4 Holocene earthquakes 
between 5 and 9.6-10.2 ka


•  some sand blows are 
comparable to NMSZ


•  M6.7-7.7

•  Default to background 0.5
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Figure 6.1-2b Close-up of the Wabash Valley and New Madrid/Reelfoot Rift RLME sources and seismicity from the CEUS SSC 
earthquake catalog. Some of the RLMEs occur in regions of elevated seismicity, but others do not.

Fig 6.1.2b

CEUS SSC report




RECENT PUBLICATIONS
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PRELIMINARY CONCLUSIONS


• Five generations of sand blows and related 
feeder dikes in Marianna area


• Weathering characteristics, stratigraphic and 
structural relations of features, and dating of 
buried soils suggest that liquefaction 
features formed during paleoearthquakes ~ 
4.8, 5.5, 6.8, 9.9, and 9.9-38 ka


• Marianna sand blows are likely due to local, 
not New Madrid, earthquakes:

• Very large size of liquefaction features

• Lack of similarly large features that formed 

in AD 1811-1812, 1450, and 900




DAYTONA BEACH LINEAMENT
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Figure 6.1.7-3 Map showing liquefaction features near Daytona Beach lineament southwest of Marianna, Arkansas

• many large sand 
blows


• severe ground failure

• may be surface 

expression of fault at 
depth; perhaps 
western member of 
White River FZ


Fig 6.1.7-3
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PRELIMINARY CONCLUSIONS


• Marianna sand blows are likely due to local, not New 
Madrid, earthquakes:

• Very large size of liquefaction features

• Lack of similarly large features that formed in AD 

1811-1812, 1450, and 900"
•  Some liquefaction evidence of complex faulting perhaps 

involving White River FZ and Eastern Margin Reelfoot Rift 
FZ


• Marianna paleoearthquakes were probably very large (M > 
7); but warrants further study


•  Findings suggest max average recurrence time of ~1.7 k.y. 
and clustered behavior with minimum active period of ~5 
k.y. 


•  Implication - currently “quiet” members of Reelfoot Rift 
fault system may produce very large earthquakes in future 




MARIANNA PALEOLIQUEFACTION


Figure E-15  
GIS map of Marianna, Arkansas, area showing locations of liquefaction features for which there are and are not radiocarbon data. Map projection 
is USA Contiguous Albers Equal Area Conic, North America Datum 1983. 

• Five generations of 
sand blows and 
related feeder dikes 
in Marianna area


• Field identification 
degree of weathering 
stratigraphic & 
structural relations  
dating of buried soils 


• Paleoliquefaction 
formed about 4.8, 
5.5, 6.8, 9.9, and 
9.9-38 ka


Fig E-15
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ESTIMATED TIME OF 
PALEOLIQUEFACTION FORMATION 


Figure E-17  
GIS map of Marianna, Arkansas, area showing preferred age estimates of liquefaction features; features whose ages are poorly constrained are 
excluded. Map projection is USA Contiguous Albers Equal Area Conic, North America Datum 1983.  

Fig E-17
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Figure E-17  
GIS map of Marianna, Arkansas, area showing preferred age estimates of liquefaction features; features whose ages are poorly constrained are 
excluded. Map projection is USA Contiguous Albers Equal Area Conic, North America Datum 1983.  


