The August 23, 2011 Earthquake in the Central Virginia Seismic Zone

Martin Chapman

mcc@vt.edu
Dept. of Geosciences
Virginia Tech

USGS National Seismic Hazard Mapping Workshop
University of Memphis
Memphis, Tennessee
February 22-23, 2012

Magnitude Greater Than 3.0, 1568 to Present

August 23, 2011 M 5.8 **Instrumentally Located Epicenters** Pre-Instrumental Epicenters 1977-2010 39N 39N O 12/9/2003 Charlottesville 12/23/1875 38N 38N Richmond 5/5/2003 mb(Lg) mb(Lg) 37N 37N km 50 100 50 100 36N 36N 79W 78W 77W 78W 79W 77W

from: Kim, W.-Y. and M.C. Chapman (2005). The 9 December 2003 central Virginia earthquake sequence: a composite earthquake in the central Virginia seismic zone, BSSA, 95, 2428-2445

USGS Community Internet Intensity Map VIRGINIA

Processed: Sat Feb 18 22:30:15 2012

Examples of damage, August 23, 2011

USGS internet intensity maps

Note the stronger shaking reported to the North and Northeast of the epicenter

http://earthquake.usgs.gov/earthquakes/dyfi/events/se/082311a/us/index.html

Some Other Central Virginia Shocks

Isoseismals from Hopper and Bollinger, 1971

August 17, 1984, $m_{bLg} = 4.0$ from Tsoflias et al. 1991

The two largest central Virginia events prior to 2011

December 9, 2003, M 4.5 compound event

INTENSITY	I	II-III	IV	V	VI	VII	VIII	IX	X+
SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy

USGS internet intensity map

December 22, 1875

from: Coruh, C., G.A. Bollinger and J.K. Costain (1988). Seismogenic structures in the central Virginia seismic zone, Geology, 16, 748-751.

from: Coruh, C., G.A. Bollinger and J.K. Costain (1988). Seismogenic structures in the central Virginia seismic zone, Geology, 16, 748-751.

Focal mechanisms in Central Virginia are compressional (P axis is sub-horizontal) but the azimuth of the P axis ranges from Northeast to Southeast, and may depend on depth.

The P axis trend and plunge for the 2011 event is N102E, 3 degrees (R.B. Herrmann)

from: Coruh, C., G.A. Bollinger and J.K. Costain (1988). Seismogenic structures in the central Virginia seismic zone, Geology, 16, 748-751.

August 23, 2011 M 5.8 mechanism by Bob Herrmann

March 5, 2005, M 3.9 Bob Herrmann

Table 1 Significant Earthquakes that Occurred in the Central Virginia Seismic Zone*

Date (yyyy-mm-dd)	Origin Time (hh:mm:sec)	Latitude (° N)	Longitude (° W)	Depth (km)	Mag. $m_b (Lg)$	$I_{ m max}$	Felt Area (km²)	Reference
1774-02-21	19:11	37.2	77.4		4.6			(1, 6)
1833-08-27	11:00	37.7	78.0		4.6	VI	130,000	(7)
1852-11-02	23:35	37.6	78.6		4.4			(6)
1875-12-23	04:45	37.8	78.0		4.9	VII	120,000	(1)
1885-10-10	04:35	37.7	78.8		4.4	VI	51,000	(6)
1907-02-11	13:22	37.7	78.3		4.0	VI	5,100	(6)
1918-04-10	01:09:12	38.7	78.4		4.7	VI	153,000	(8)
1981-02-11	13:44:16.4	37.720	78.435	6	3.4			(2)
1981-02-11	13:50:31.5	37.750	78.407	10	3.2			(2)
1981-02-11	13:51:38.6	37.721	78.450	7	2.9			(2)
1984-08-17	18:05:46.9	37.868	78.324	8	4.2	V–VI	60,000	(3)
1998-10-21	05:56:46.9	37.422	78.439	13	3.8			(4)
2003-05-05	16:32:32.7	37.755	78.072	5	3.9	V		(4)
2003-12-09	20:59:14.6	37.607	77.963	5	4.5	VI	160,000	(5)
2003-12-09	20:59:18.7	37.774	78.100	10	$4.25 \; M_{\rm w}$			(9)
2003-12-09	20:59:18.72	37.7753	78.0997	10.03	$4.05~M_{\rm w}$	subevent 1		hypoDD
2003-12-09	20:59:30.68	37.7727	78.1003	9.97	$4.05 \; M_{\rm w}$	subevent 2		hypoDD

^{*}Mag, magnitude: I_{max}, maximum Modified Mercali intensity; (1) Stover and Coffman (1993), Bollinger and Hopper (1971), Oaks and Bollinger (1986); (2) Sibol and Bollinger (1981); (3) Davison et al. (1984); (4) Virginia Tech Seismological Observatory data archives, USGS Preliminary Determination of Epicenter reports; (5) Quick Epicenter Determinations (QED), National Earthquake Information Center USGS; (6) Bollinger (1969); (7) Mac-Carthy (1958); (8) Watson (1918); (9) this study.

8 M 4.0 and greater events since 1875 6 M 3.4 and greater events since 1981 Log N = 2.766 - (1)MLog N = 2.687 - (1) M

return period: M 4.0 17.1 years return period: M 4.0 20.6 years

M 5.0 171 years M 5.0 206 years

M 5.8 1,081 years M 5.8 1,297 years

The long-term rates agree with the instrumentally based rates But is the b value in the central Virginia seismic zone close to 1????? probably not

Chapman's 2012 fit to central Virginia

Return period M 5.8: 437

Return period M5.8: 1,72

recurrence based on N (M=3.0 since 1976) with b=0.95

Magnitude

-2.5

-3.0

-3.5

Bollinger, G.A. Davison, F.C., M.S. Sibol and J.B. Birch (1989). Magnitude recurrence relations for the southeastern United States and its subdivisions, JGR, 94, B3, 2857-2873

Strong motion recordings on the foundation base mat of the unit 1 containment structure at North Anna.

The records are remarkable for the very short duration, and pulse-like character of the largest motion——the S wave(s).

Note the modulated character of the Fourier amplitude spectra, due to two strong pulses in the S-wave train.

Sub-events are visible on teleseismic recordings

Consider two different sources, at points O and P in the plane of the fault. Define point O to be the origin of a local Cartesian coordinate system in the horizontal plane, with X axis in the strike direction.

Results of locating sub-events 2 and 3 relative to event 1 under the assumption that they are on a single fault plane using teleseismic and local data. The rupture velocity was apparently about 1.5 km/s.

Early aftershocks and main shock subevents

