CEUS Catalogs

 $1996 - \text{goal}: m_{bLg} >= 3$, dominated by NCEER91

- source catalogs: NCEER > USHistory > SRA > PDE > DNAG
 (we prefer national-scale catalogs for uniformity)
 - 1) reformat, convert magnitudes, & combine
 - 2) select single records & decluster (Gardner & Knopoff)
 - 3) delete: Rocky Mtn Arsenal, Rangely, Cogdell, Utah coal mining
- ~2900 mainshocks, 1700-1995
 73% NCEER, 15% PDE, 8% SRA, 2% DNAG, 1% USHistory

2002 changes

- extend through 2001
- delete: Paradox Valley, CO
- improve handling of man-made events
 (Street KY mining, Kirkham&Rogers CO mining, PDE explosions, etc.)

changes we are considering for 2006

- extend through 2006
- J. Armbruster's updates to NCEER
- delete DNAG
- add EqCanada?, Virginia Tech?, others? (concerns about uniformity)

Computing Hazard From Seismicity

smoothed seismicity defines the hazard for most of CEUS

set grid resolution and compute b...

Models 1-3: gridd ed and smoothed historical seismicity

Model 1: $m_{bLg} \ge 3$ since 1924 (1976 west of -105°), smooth = 50 km

Model 2: $m_{bLq} \ge 4 \text{ since } 1860 \text{ (1963 west of -105°)}, \text{ smooth } = 75 \text{ km}$

Model 3: $m_{bLg} \ge 5$ since 1700 (1860 west of -105°), smooth = 75 km

For each model, get maximum-likelihood rate in each grid cell, multiply by a completeness adjustment factor, and smooth spatially. Then, for each cell,

 $Rate_{\mathsf{Historical}} \,=\, 0.5 \,\times\, Rate_{\mathsf{Model1}} \,+\, 0.25 \,\times\, Rate_{\mathsf{Model2}} \,+\, 0.25 \,\times\, Rate_{\mathsf{Model3}}$

Model 4: average background rates in craton and extended-margin zones

Then, for each cell compare Rate_{Historical} and Rate_{Background} ...

If $Rate_{Historical} \ge Rate_{Background}$, then $Rate_{Final} = Rate_{Historical}$

Otherwise, Rate_{Final} = $0.8 \times Rate_{Historical} + 0.2 \times Rate_{Background}$

(violates the overall seismicity budget in the CEUS by only about 10%...)

In trying to include as many epicenters as possible in the model, we recognize that we may have been a bit optimistic about completeness.

Regional completeness adjustment factors, which range from about 1.1 to 1.9 depending on the model and region, are equal to the ratios of modern, known-complete seismicity rates and the assumed-complete rates.

example:

CAF for mag3 model = avg. 1976 rate / avg. 1924 rate in a region

10ai/cell/y, catalog used for 2002 nshm (m3,1924-2001)

