AIR - WORLDWIDE

Mehrdad Mahdyiar Earthquake Hazard Group

BETTER DATA
BETTER DECISIONS

www.air-worldwide.com

AIR Conducts Probabilistic Loss Analysis for Natural Hazards

- □ AIR Worldwide was founded in 1987. Presently, AIR is a subsidiary of ISO
- □ Offices:
 - > Boston
 - > San Francisco
 - > London
 - > China
 - Germany
 - > Hyderabad, India

AIR Technical Staff

AIR Catastrophe Models

Tropical
Cyclones
(Typhoons,
Hurricanes

Tornadoes, Hailstorms & Straight-line Windstorms

Extra-tropical Cyclones (i. e. Winter Storms) Earthquake (Shake)

Earthquake (Fire Following)

Terrorism (Property, Work Comp, Life)

Australia
Caribbean
Hawaii
Hong Kong
Japan
Philippines
Taiwan
United States

Canada
United States

Austria
Belgium
Canada
Denmark
France
Germany
Ireland
Luxembourg
Netherlands
Norway
Switzerland
Sweden
UK - includes Flood

United States

Australia
Canada
Caribbean
Chile
Colombia
Greece
Hong Kong
Indonesia
Israel
Italy
Japan
Mexico

Canada Japan United States **United States**

Israel
Italy
Japan
Mexico
New Zealand
Philippines
Portugal
Taiwan
Turkey
United States
Venezuela
China
Peru

Paleoseismic, GPS, and Earthquake Catalog Data are Used to Construct Regional Seismicity

An Example from Colombia and Venezuela

Kinematic Model and GPS Data are Used to Calculate Regional Strain Rate Distribution

3D Elastic Finite Element Models are Used to Get Insight into Faults Slip Rates and Regional Strain Rates

GPS
Stations

Primary Model Components

Faults, Special Seismic Zones, and Background Seismicity Magnitude Rate Distribution

USGS 2002 and AIR Magnitude Rate Distribution of Large Earthquakes for New Madrid Seismic Zone (NMSZ)

USGS and AIR Magnitude Rate Distribution of Large Earthquakes for Charleston Seismic Zone

Spatial Distribution

Broad Zone Woodstock Zone 0.5 0.5

AIR Relies on USGS and Canadian Geological Survey Hazard Reports to Construct Regional Seismicity Models

Ground Motions at Rock Reference Sites are Calculated and are Translated into Soil Site Ground Motions

$$\sqrt{(\rho_1 * c_1)/(\rho_2 * c_2)}$$
 ?

 Providing regional frequency and amplitude dependent site amplification maps compatible with regional attenuation equations can improve ground motion calculations

Ground Motion Correlation is Used to Quantify Loss Uncertainty

Ground Motion Correlation is Formulated Based on the Values of Inter and Intra Variability

$$ln(Y) = ln(Y) + \varepsilon_{inter} + \varepsilon_{intra}$$

$$\rho_{GM} = \frac{\sigma^{2}_{inter}}{\sigma^{2}_{inter} + \sigma^{2}_{intra}}$$

Assessing Catastrophe Risk: Questions we are Often Asked

The users of catastrophic models often are quite interested in understanding the physical causes of regional and local hazard/risk and reasons for model changes
 A very detailed technical report will be very useful for understanding the USGS logic and thought process in constructing national hazard maps