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Wald and Graves (1998, BSSA)
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e Wave-structure interactions (amplification—structure
deeper than 30 m, incidence at basin geometry, surface
waves, trapping, scattering)

* \Wave-wave interactions (basin-edge)



Plan for incorporating basin effects:
2018, 2020 NSHM and beyond
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1) Empirical GMPEs, varying Vs30 values, default basin depths
2) Empirical GMPEs, varying Vs30 values, basin depths (21/Z2.5)
3) Use of GMPEs with basin amplifications from 3-D simulations



Outline

* Influence of 3D simulations in empirical GMMs
(NGA-West-2)

* Motivation for use of regional 3D simulations
 Availability of 3D-simulations in western U.S.

* Requirements for using ground motions from 3D
simulations

* Plan for incorporating ground motions from 3D
simulations into NSHM

* Example hazard sensitivity from use of basin terms
from the SCEC CyberShake simulations
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3D Ampliflcation

tion)

The trend for Z,; >3 km. which is due presumably to 3-D basin effects, was based on
too few data to empirically determine how these effects could be extrapolated with sediment
depth and spectral period. Instead. this trend was constrained using the sediment-depth model
developed by Day (2005) and Day et al. (2005) from theoretical ground motion simulations of
the 3-D response of the Los Angeles, San Gabriel, and San Fernando basins in southern

California.

Campbell and Bozorgnia (2007, PEER)
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Key questions for implementation of basin
amplifications (and potential for 3D
simulations)

* How well are basin depths
constrained?

* How well do the GMPEs behave in
the regions for which they were
developed?

* How similar is the geologic
structure/geometry of sedimentary
basins in different regions (e.g., Los
Angeles, San Francisco Bay Area,
Seattle, Salt Lake City)?

Chiou and Youngs (2008; PEER)



Key questions for implementation of basin
amplifications (and potential for 3D
simulations)
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* How well do the GMPEs behave in

the regions for which they were
developed?

* How similar is the geologic
structure/geometry of sedimentary
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Key questions for implementation of basin
amplifications (and potential for 3D

simulations)
+« How-wellare-basin-depths
constrained?
e How well do the GMPEs behave in

the regions for which they were
developed?
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Differences in body- and surface-wave
amplification
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Frankel et al. (2002; BSSA)
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Higher-order effects of sedimentary basins

Northridge 1994, Los Angeles

1-Hz amplifications, Seattle
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Key questions for implementation of basin
amplifications (and potential for 3D
simulations)

* How similar is the geologic
structure/geometry of sedimentary
basins in different regions (e.g., Los
Angeles, San Francisco Bay Area,
Seattle, Salt Lake City)?
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Variations in basin structure
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Urban seismic hazard maps
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Multiple classes of urban seismic hazard maps

- Including, 3-D simulation-based ground-motions* (Seattle and southern California)
More urban seismic hazard maps in-progress (Reno, Las Vegas, ...)



Example from Wasatch Front, Utah

Moschetti et al. (2017; BSSA)




Example from Wasatch Front, Utah
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Example from Wasatch Front, Utah
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Wang and Jordan (2014)
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Requirements for using ground
motions from 3D simulations

e Based on feedback from WG-USHM, Earthquake
Hazards Program, NSHMP Steering Committee

* Only incorporate well-vetted components from
earthquake simulations
* |nitial focus on basin amplifications

* At this point, not considering effects from path, directivity,
source complexity

* Validate the simulated ground motions (or
components); are simulations providing
improvements relative to empirical GMMs



Plan for incorporating ground motions
from 3D simulations into NSHM

* Empirical GMMs, with basin amplifications from 3-D

simulations
* Implementation of basin amplification terms from
CyberShake in nshm-haz code and sensitivity testing (Los
Angeles)

 Validation of 3-D-simulation-derived amplification factors—
comparison with small-M earthquake data

* Sensitivity testing for other regions and incorporation, 2020
NSHM

* NSHM GMMs would presumably use weightings between simulated
and empirically based GMPEs (period-dependent, similar to SCEC-
UGMS recommendations?)

* On-going simulation efforts in Seattle and Salt Lake City



Averaging-based factorization (ABF)
(Wang and Jordan, 2014)

G(r.k,x,s)=InY(r, k, x,s).

R K X S -
S

G(r,k,x,s) = A+ B(r) + C(r, k) + D(r, k, x)
+ E(r,k, x,s).
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Successive averaging over sets of simulated ground motions permits
parameterization of simulated ground motions into terms similar to
GMPEs:

E: Total excitation level; source complexity

D: expectation over slip functions S; directivity effect

C: Expectation over hypocenters X; path effect

B: Expectation over seismic sources K; site effect

A: Expectation over all sites R; regional excitation level




Basin amplifications, CyberShake, ABF

ASI4 1.00

CyberShake, 3 s
0.75
0.50
0.25
0.00 m
-0.25
-0.50
-0.75
-1.00
CS-AS14 0.5
0.4 Example 3-s B- and b-values:
[ 0.3 Site effects (shallow site and
0.2

basin amplifications, modeled
by Vs30 and Z1/Z72.5)




Hazard sensitivity,

Comparison of 3 Second ASK14 Mean Hazard for the LA Basin
amplified vs. nonamplified
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Testing amplification factors from 3D
simulations using small-M earthquakes
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* Empirical amplification factors, Thompson and Wald (2016)

 Comparison of small-M ground motions with GMPE-
predictions

* Use simulation-derived site response terms to assess whether
empirical amplification factors improve
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Example by Strasser et al. (2009)
using Boore et al. (1997) GMPE
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Basin amplifications, CyberShake, ABF

3-s SA
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Example from Wasatch Front, Utah
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