

Earthquakes 🖈 Floods 🖈 Hurricanes 🖈 Landslides 🖈 Tsunamis 🖈 Volcanoes 🖈 Wildfires

Z_x 'Basin Depth' maps for Western United States Ground Motion Prediction **Equations Presented by Oliver Boyd** U.S. Geological Survey

NSHMP Workshop, March 8th, 2018

U.S. Department of the Interior U.S. Geological Survey

Acknowledgements

- Morgan Moschetti and Bill Stephenson—Provide expertise and depths to 1.0 and 2.5 km/s in Seattle and Wasatch Front
- Brad Aagaard—Making the Bay Area velocity model software available.
- Phil Maechling and Scott Callaghan—Providing expertise on the Unified Community Velocity Model software
- Brandon Schmandt and Weisen Shen—Providing national scale seismic velocity models
- Eric Thompson—Calculate ground motion residuals

Types of Z_X Estimates

- Local velocity models (high resolution, low uncertainty but highly variable within study area)
 - Boreholes, gravity, seismic refraction/reflection, other geophysical methods
- National velocity models (low resolution, medium uncertainty with uniform coverage)
 - Various seismic methods: Tomography, H/V, receiver functions, etc.

Types of Z_X Estimates

- Proxy models (high resolution, high uncertainty, uniform coverage)
 - $Z_X(V_{S30})$ where, for example, $\overline{V_{S30}}$ is based on topography and geology
- Scaling relationships (resolution and coverage depends on input, high uncertainty)
 - $-Z_{1.0}(Z_{2.5}, V_{S30})$
- Default GMPE relationships

Z_X Models in the WUS

- From local and national velocity models, depths to 1.0 and 2.5 km/s shear-wave velocity (Z_{1.0} and Z_{2.5}) are extracted.
- Also consider smoothed V_{S30} -based Z_X model

Original $Z_{1.0}$ 500 Solution Models

• Large areas of values of $Z_{1.0}$ equal to zero, likely unresolved

Original $Z_{2.5}$ $\mathbb{E}_{\mathbb{R}^2}$ 2500 Models

 Smaller areas of very low, likely unresolved, values of Z_{1.0}

Correcting shallow values of Z_{1.0} using $Z_{2.5}$

 All models have reasonable values of Z_{2.5} in some areas.

Correcting shallow values of $Z_{1.0}$ and $Z_{2.5}$

• Relationship of $Z_{1.0}$, $Z_{2.5}$, and V_{S30} in NGA-West2 database.

Remove low values of $Z_{2.5}$

• Calculate $Z_{1.0}$ given $Z_{2.5}$ and V_{S30} .

Replace or (£ 400 N 300) remove low values of $Z_{1.0}$

Combining models

- Preweighting of original models
 - Models are extrapolated to the full domain with inverse distance weighting. Model weight prefactors drop from 1 where the model is well resolved to zero elsewhere.
- Logic tree weights based on, for example, variance reduction of intra-event residuals, log-likelihood methods, inherent model uncertainties, expert opinion, etc.

Types of Uncertainty

- Uncertainty in Z_X
- Uncertainty in how Z_X is modeled in the GMPE
 - functional form
 - model coefficients
 - model parameters and whether Z_X should be an integrated measure of subsurface properties

- Station locations
 (yellow circles)
 primarily in California
- No stations in Seattle or along the Wasatch Front

Z_{1.0}
Abrahamson et al. (2014)

Z_{1.0}
Chiou and Youngs (2014)

Z_{1.0} Boore et al. (2014)

Z_{2.5}
Campbell and Bozorgnia (2014)

Conclusions

- All models have reasonable values of $Z_{2.5}$
- National velocity models can reduce intra-event residuals for the $Z_{2.5}$ -based GMPE
- Smoothed $V_{\rm S30}$ -based proxy models can reduce residuals for all GMPEs
- Local models yield the greatest variance reduction
 - Best resolved with least uncertainty
 - Used to derive the GMPEs

Possibilities for a composite model: weighting

- Variance reductions of intra-event residuals to guide relative weighting of models
- Log-likelihood methods
- Expectations of Z_X model uncertainty
- Expert Opinion

Local models get greatest weight

National models and smoothed VS30-based proxy model fill in the background.