

Update of the CEUS GMMs in the 2018 NSHM

Mark Petersen
USGS, Golden, CO
USGS 2018 NSHM Update Workshop
Wednesday, March 7th, 2018

Available CEUS GMMs for the 2018 NSHM

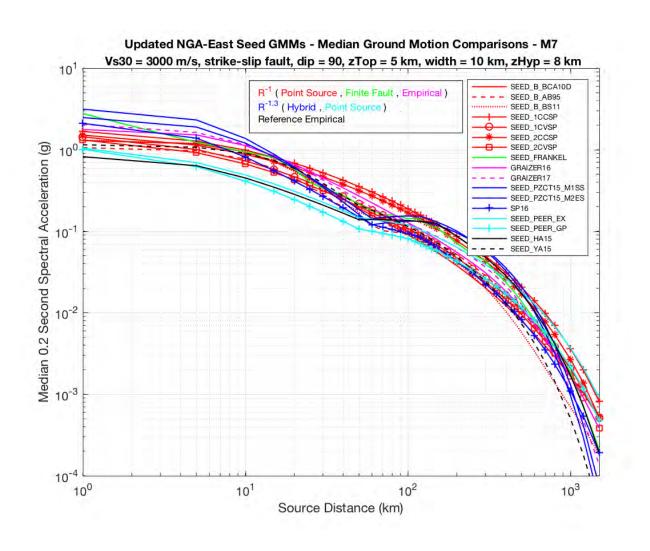
1. USGS 2014 CEUS GMMs

2. Updated NGA-East Seed GMMs

3. NGA-East USGS GMMs*

^{*} NGA-East USGS GMMs published by PEER in March 2017. This is an interim model of the final NGA-East GMMs expected from the NGA-East Project.

Hazard Model Improvements as a Result of the NGA-East Project


1. M4-8.2, $R_{RUP} \le 1500 \text{ km}$

- Table 1.1 Minimum 5%-damped PSA periods, T, (and frequencies, F) for NGA-East GMM development, in addition to PGA and PGV.
- 2. Additional periods (short and long)
- 3. Quantification of epistemic uncertainty in median ground motions (objective sampling of GMMs from Sammon's maps), aleatory variability (sigma) model (with epistemic uncertainty on sigma model)
- 4. Site amplification model (reference site condition; $V_{s30} = 3000 \text{ m/s}$)
- 5. Gulf coast factors

T (sec)	F (Hz) 100 50			
0.01				
0.02				
0.025	40 33.33 25			
0.03				
0.04				
0.05	20			
0.075	13.33 10			
0.1				
0.15	6.67			
0.2	5 4 3.33 2.5 2 1.33			
0.25				
0.3				
0.4				
0.5				
0.75				
-19	1.			
1.5	0.67			
2	0.5			
3	0.33			
4	0.25			
5	0.2			
7.5	0.13			
10	0.1			

NGA-East Seed GMMs (19 Final Adjusted Models)

Models	Modeler(s)	Model Type*		
B_a04		Point Source (R ⁻¹)		
B_ab14				
B_ab95	2 (2015)			
B_bca10d	Boore (2015)			
B_bs11				
B_sgd02				
1CCSP		Point Source (R ⁻¹)		
1CVSP	D			
2CCSP	Darragh et al. (2015)			
2CVSP				
YA15	Yenier and Atkinson (2015)	Reference Empirical		
PZCT15_M1SS	Dozoski ot al. (2015)	11. de :: d / D-1 3\		
PZCT15_M2ES	Pezeshk et al. (2015)	Hybrid (R ^{-1.3})		
Frankel15	Frankel (2015)	Finite Fault (R-1)		
SP15	Shahjouei and Pezeshk (2015)	Hybrid (R ^{-1.3})		
Graizer15	Graizer (2015)	Empirical (R ⁻¹)		
HA15	Hassani and Atkinson (2015)	Reference Empirical		
PEER_GP	Hollenbeck et al. (2015)	Point Source (R-1.3)		
PEER_EX	(2020)	(1.		

^{*}Note: Workshop participants mentioned that some model types may be misclassified.

Updated NGA-East Seed GMMs (17 Final Models)

Models	Modeler(s)	Updates since Publication	Recommendations from Modelers	Final Models
B_a04				1. B_ab95
B_ab14	Boore (2015)			2. B_bca10d
B_ab95			Modeler recommended using B_ab95, B_bca10d, and B_bs11,	3. B_bs11
B_bca10d	Boore (2015)		with the highest weight on B_bca10d	
B_bs11				
B_sgd02				
1CCSP				4. 1CCSP
1CVSP			Modelers recommend using all 4 models with equal weight	5. 1CVSP
2CCSP	Darragh et al. (2015)			6. 2CCSP 7. 2CVSP
2CVSP				7. 20031
YA15	Yenier and Atkinson (2015)			8. YA15
PZCT15_M1SS	D - -1 -1 /2045)		Na dalam manada da bada a dala	9. PZCT15_M1SS
PZCT15_M2ES	Pezeshk et al. (2015)		Modelers recommend using both models	10. PZCT15_M2ES
Frankel15	Frankel (2015)		Modeler recommended using model as is	11. Frankel
SP15	Shahjouei and Pezeshk (2015)	Shahjouei and Pezeshk (2016)	Modelers recommend replacing SP15 with SP16	12. SP16
Graizer15	Graizer (2015)	Graizer (2016), Graizer (2017)		13. G16 14. G16v2
HA15	Hassani and Atkinson (2015)			15. HA15
PEER_GP	Hallanhaak at al. (2015)			16. PEER_GP
PEER_EX	Hollenbeck et al. (2015)			17. PEER_EX

NGA-East USGS GMMs (13 Models)

Models

NGA_EAST_USGS_1

NGA_EAST_USGS_2

NGA_EAST_USGS_3

NGA_EAST_USGS_4

NGA_EAST_USGS_5

NGA_EAST_USGS_6

NGA_EAST_USGS_7

NGA_EAST_USGS_8

NGA_EAST_USGS_9

NGA_EAST_USGS_10

NGA_EAST_USGS_11

NGA_EAST_USGS_12

NGA_EAST_USGS_13

- Representative model for each cell
- Weights for each model come from Sammon's mapping.
- Weights are period and magnitude dependent.

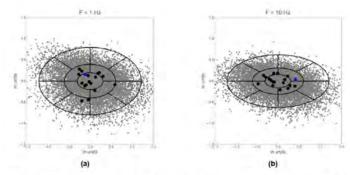


Figure 3.52 Sammon's maps for two different frequencies and 10,000 sampled models (gray points). The partition of the ground-motion space defined by the Project Team are shown as black cells. The mean model is plotted as a red dot, the up/down-scaled models are plotted as + and -, respectively. The seed models are plotted as black dots. The reference model "SP15" is plotted as a blue dot.

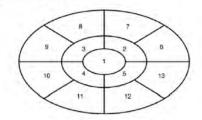


Figure 3.53 Cell index numbers.

NGA-East USGS Sigma (Aleatory Variability) Model

- 1. The NGA-East Project Team recommends the USGS use the total ergodic sigma model (standard deviation) for the NSHMs.
- 2. The model is based on the NGA-West2 total ergodic sigma model.

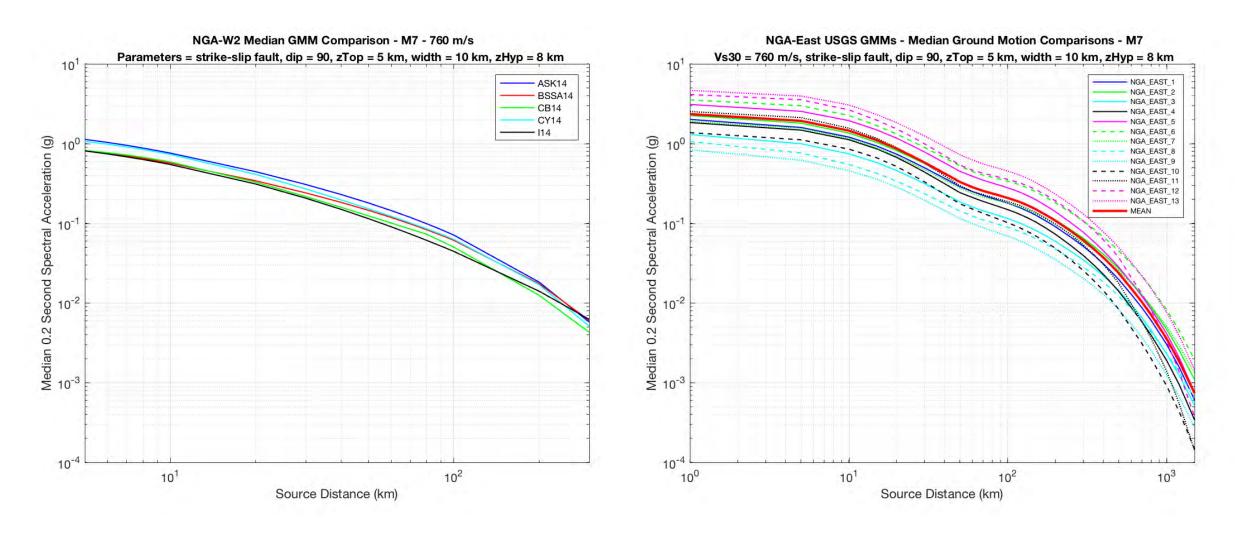
 τ = between-event variability (Tau)

 Φ = single-station within-event variability (PhiSS)

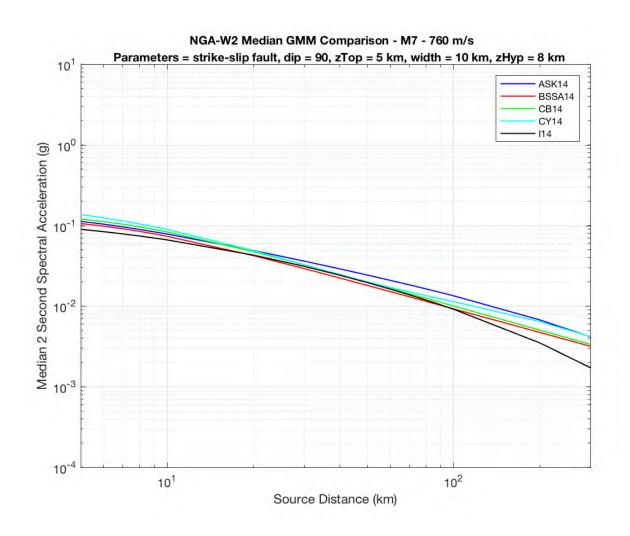
Table 5.5 Recommended total ergodic sigma model.

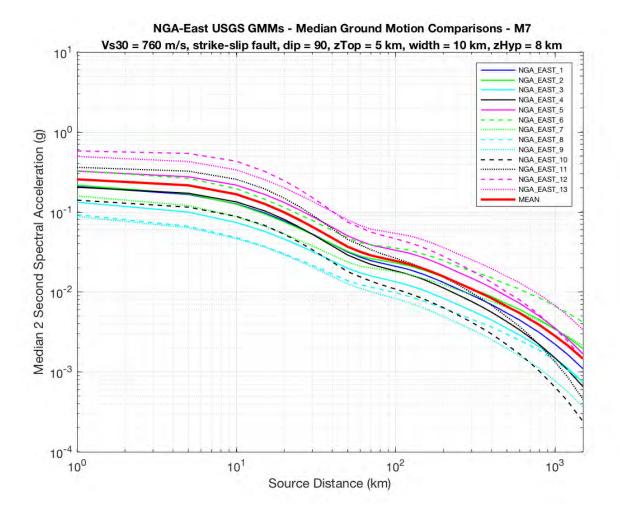
Doring	(000)	Com	Components of the Total Ergodic Sigma Model					
Period (sec) Frequency (Hz)		M 5.0		M 6.0		M >= 7.0		
		τ	φ	τ	φ	τ	φ	
0.01	100	0.4320	0.6269	0.3779	0.5168	0.3525	0.503	
0.02	50	0.4710	0.6682	0.4385	0.5588	0.4138	0.546	
0.03	33.33	0.4710	0.6682	0.4385	0.5588	0.4138	0.546	
0.04	25	0.4710	0.6682	0.4385	0.5588	0.4138	0.546	
0.05	20	0.4710	0.6682	0.4385	0.5588	0.4138	0.546	
0.075	13.33	0.4710	0.6682	0.4385	0.5588	0.4138	0.546	
0.1	10	0.4710	0.6682	0.4385	0.5588	0.4138	0.546	
0.15	6.67	0.4433	0.6693	0.4130	0.5631	0.3886	0.550	
0.2	5	0.4216	0.6691	0.3822	0.5689	0.3579	0.556	
0.25	4	0.4150	0.6646	0.3669	0.5717	0.3427	0.559	
0.3	3.33	0.4106	0.6623	0.3543	0.5846	0.3302	0.572	
0.4	2.5	0.4088	0.6562	0.3416	0.5997	0.3176	0.588	
0.5	2	0.4175	0.6526	0.3456	0.6125	0.3217	0.601	
0.75	1.33	0.4439	0.6375	0.3732	0.6271	0.3494	0.618	
1	1	0.4620	0.6219	0.3887	0.6283	0.3650	0.622	
1.5	0.67	0.4774	0.5957	0.4055	0.6198	0.3819	0.618	
2	0.5	0.4809	0.5860	0.4098	0.6167	0.3863	0.616	
3	0.33	0.4862	0.5813	0.4186	0.6098	0.3952	0.609	
4	0.25	0.4904	0.5726	0.4144	0.6003	0.3910	0.600	
5	0.2	0.4899	0.5651	0.4182	0.5986	0.3949	0.598	
7.5	0,13	0.4803	0.5502	0.4067	0.5982	0.3835	0.598	
10	0.1	0.4666	0.5389	0.3993	0.5885	0.3761	0.588	
PGV		0.3925	0.5979	0.3612	0.5218	0.3502	0.509	

NGA-East Amplification Model


Linear Model: Stewart et al., (2017; PEER Report 2017/04)

Non-linear Model: Hashash et al., (2017; PEER Report 2017/05)


1. We did not have these amplification models in the past (for CEUS), therefore, we were unable to make uniform soil maps for the whole US.


2. Limitations: Only available out to 5 seconds, and down to 200 m/s (no NEHRP Site Classes D/E or E?). No consideration of basins.

NGA-West2 vs. NGA-East USGS GMMs

NGA-West2 vs. NGA-East USGS GMMs

Comparison of Amplification Models

 Jon Stewart will be discussing the NGA-East amplification model and how it compares to NGA-West2 and NEHRP amplification factors this afternoon.

Considerations/Issues for this Workshop (Discuss Later Today)

1. Should we use the NGA-East Seed GMMs, the NGA-East USGS GMMs, or a combination of the two (logic tree with weights)? Should we use the original or Updated NGA-East Seed GMMs (with the new SP16, G16, G17)? The updated NGA-East Seed and NGA-East USGS GMMs combined would require consideration of 30 tables.

2. If we use the NGA-East USGS GMMs, will we need to do Sammon's mapping for all future updates?

3. If we use the NGA-East Seed GMMs how should we weight the models?

Considerations/Issues for this Workshop (cont.) (Discuss Later Today)

4. Should we use the NGA-East USGS recommended total ergodic sigma model for both the NGA-East USGS GMMs and the Updated NGA-East Seed GMMs? Should we be using the epistemic uncertainty part of the sigma model?

5. Should we be using the Gulf coast adjustments?

6. Should we use the new NGA-East amplification factors?