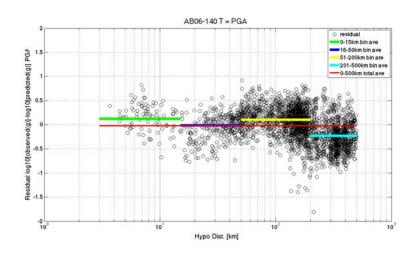
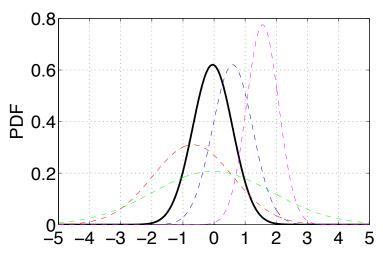


CEUS GMM Residual Study

Presented by Dan McNamara
USGS, Golden, CO
USGS 2018 NSHM Update Workshop
Wednesday, March 7th, 2018
RMS Headquarters, Newark, CA

CEUS GMM Residual Study





Objective:

Evaluate CEUS GMMs for the 2018 hazard model.

GM Data

NGAE DB OK, KS induced DB simulations M6-8

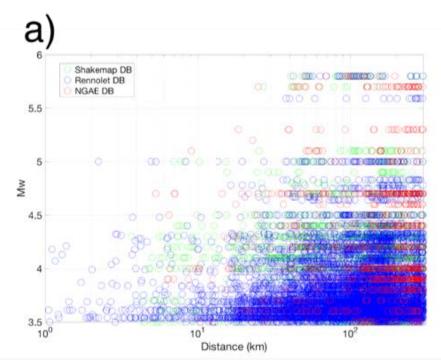
GMMs

2014 CEUS + A15 GMMs
NGAW2 GMMs
NGAE-seed GMMs
NGAE-usgs GMMs
logic tree weighted GMMs

Methods

LLH – Scherbaum et al., (2009) multivariate LLH – Mak and Schorlemmer (2017)

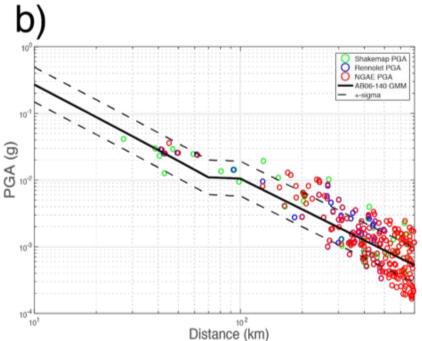
Observations



GM Data

PGA, PSA1s, PSA0.2s, M4-5.8

OK, KS induced. Renolet et al., (2017) NGAE tectonic. Goulet et al., (2015) Shakemap for more recent EQs



Also consider SM simulations M6-8

Sun and S. Rezaeian

- A. Frankel
- S. Hartzell

GMMs Evaluated

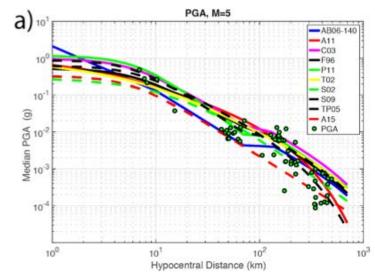
GMMs recently implemented in nshmp-haz software system by Peter Powers.

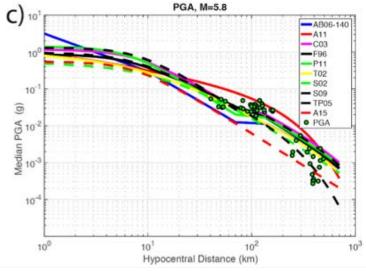
- CEUS GMMs used in 2014, 2016 (A15)
 hazard models
- NGAW2
- NGAE seed and updates (SP16, G16, G17)
- NGAE usgs
- Weighted mean GMMs
 - 2014, 2016, 2017, 2018 hazard models

Site amplification:

NGAE site amplifications applied.

- Vs30 Topo. Slope proxy used
- measured Vs30 where available

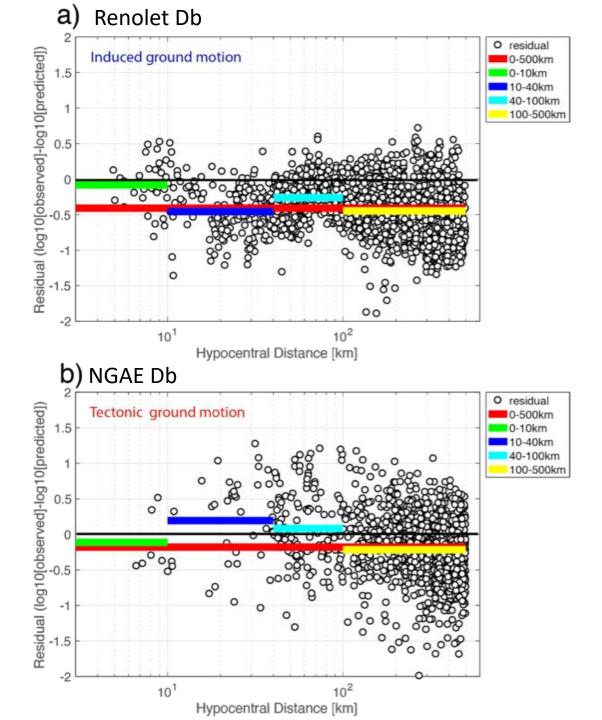


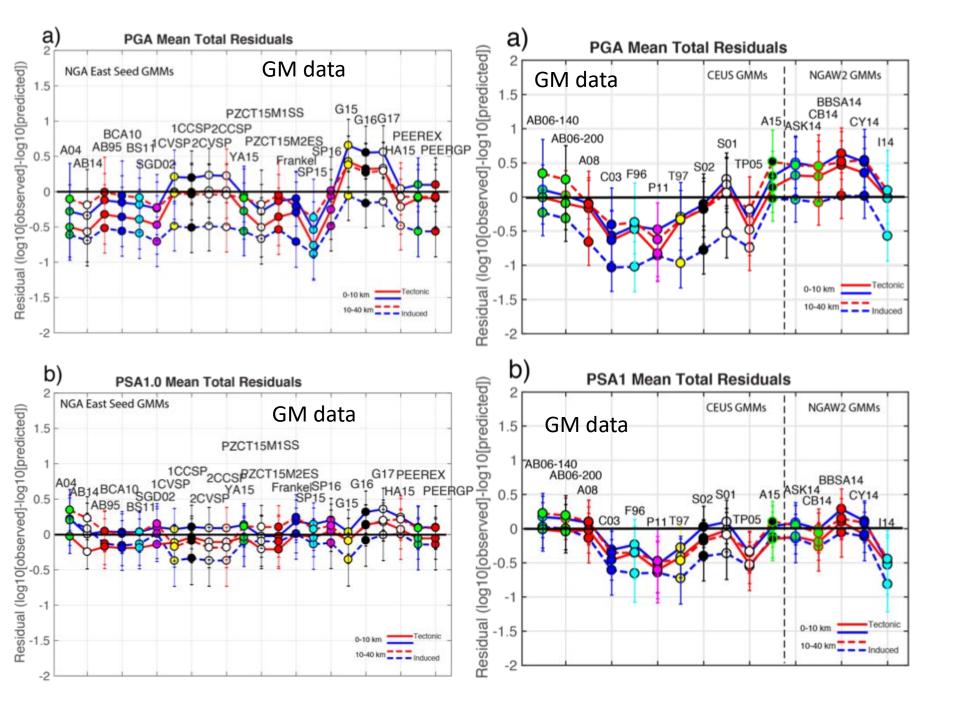


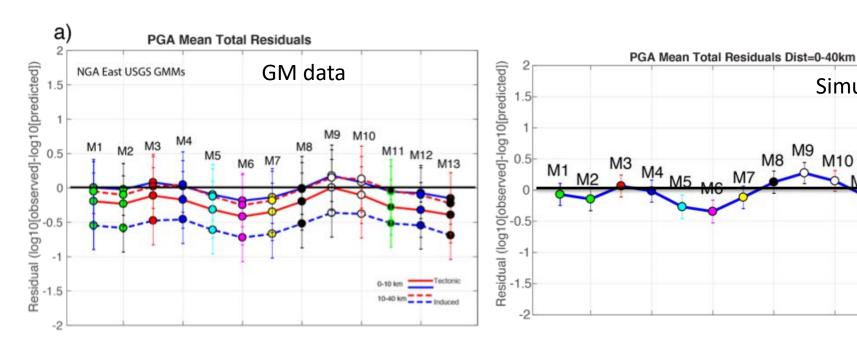
Step 1: compute residuals

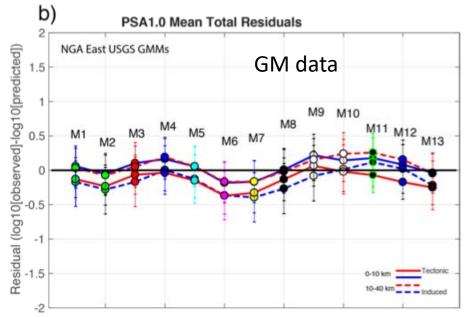
Ex. using AB06-140 GMM

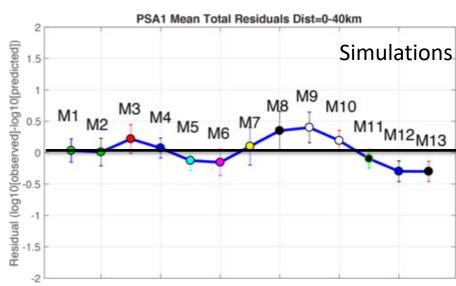
Focus on 0-40 km







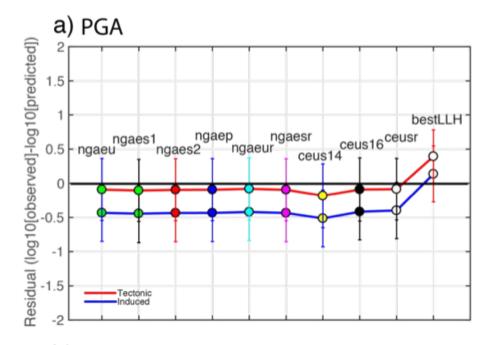


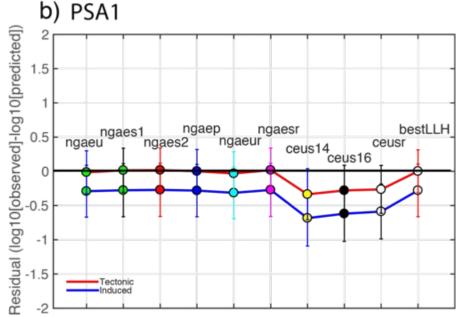


Simulations

M8 M9

M10





Weighted GMMs

(ngaeu) 13 NGA-East USGS GMMs Sammon's map weighted GMM (**Goulet et al., 2017**),

(ngaes1) 19 NGA-East SEED GMMs

(ngaes2) 19 NGA-East SEED GMMs

(ngaep) - ngaes1 and ngaes2 equally weighted (**Petersen** et al., 2018),

(ngaeur) NGA-East USGS GMMs weighted based on LLH results from this study,

(ngaesr) NGA-East SEED GMMs weighted based on results from this study,

(ceus14) CEUS GMMs

(ceus16) CEUS GMMs + A15

(ceusr) CEUS GMMs using weights determined in this study

(bestLLH) 3 best LLH results for PGA GMMs using the induced earthquake ground motions (A15,ASK14,G17) equally weighted.

LLH Method

The negative average log-likelihood LLH reflects the fit between the data and model:

LLH =
$$-\frac{1}{N} \sum_{i=1}^{N} \log_2(g(x_i)),$$

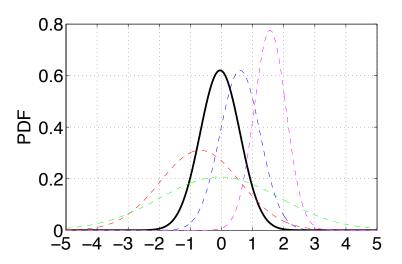
N = the number of observations xi, and g the probability density function (PDF) predicted by the GMPE (normal distribution)

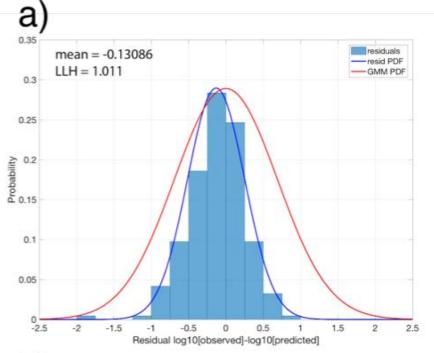
Bulletin of the Seismological Society of America, Vol. 99, No. 6, pp. 3234-3247, December 2009, doi: 10.1785/0120080347

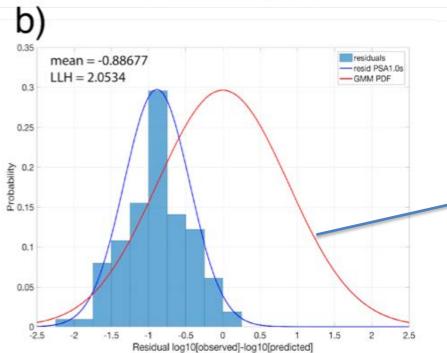
Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective

by Frank Scherbaum, Elise Delavaud, and Carsten Riggelsen

Abstract Although the methodological framework of probabilistic seismic hazard analysis is well established, the selection of models to predict the ground motion at the sites of interest remains a major challenge. Information theory provides a powerful theoretical framework that can guide this selection process in a consistent way. From an information-theoretic perspective, the appropriateness of models can be expressed in terms of their relative information loss (Kullback-Leibler distance) and hence in physically meaningful units (bits). In contrast to hypothesis testing, informationtheoretic model selection does not require ad hoc decisions regarding significance levels nor does it require the models to be mutually exclusive and collectively exhaustive. The key ingredient, the Kullback-Leibler distance, can be estimated from the statistical expectation of log-likelihoods of observations for the models under consideration. In the present study, data-driven ground-motion model selection based on Kullback-Leibler-distance differences is illustrated for a set of simulated observations of response spectra and macroseismic intensities. Information theory allows for a unified treatment of both quantities. The application of Kullback-Leiblerdistance based model selection to real data using the model generating data set for the Abrahamson and Silva (1997) ground-motion model demonstrates the superior performance of the information-theoretic perspective in comparison to earlier attempts at data-driven model selection (e.g., Scherbaum et al., 2004).







LLH score examples

Lower LLH score indicates better fit

LLH penalizes large sigma

best LLH scores when GMM sigma Similar to data sigma.

Defined by published GMM Mean and sigma

MLLH Method

Expands LLH to take advantage of inter (within) and intra (between) event residual uncertainty (phi, tau) such that

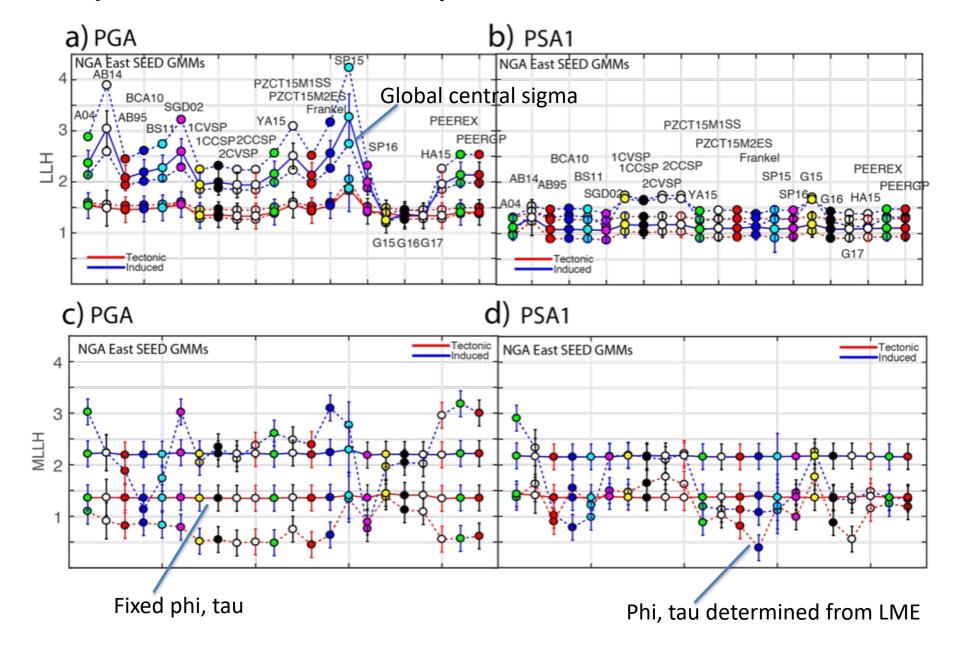
total Sigma = sqrt (phi^2 + tau^2)

Not all GMMs in the study have published phi and tau NGAE models have uniform phi and tau

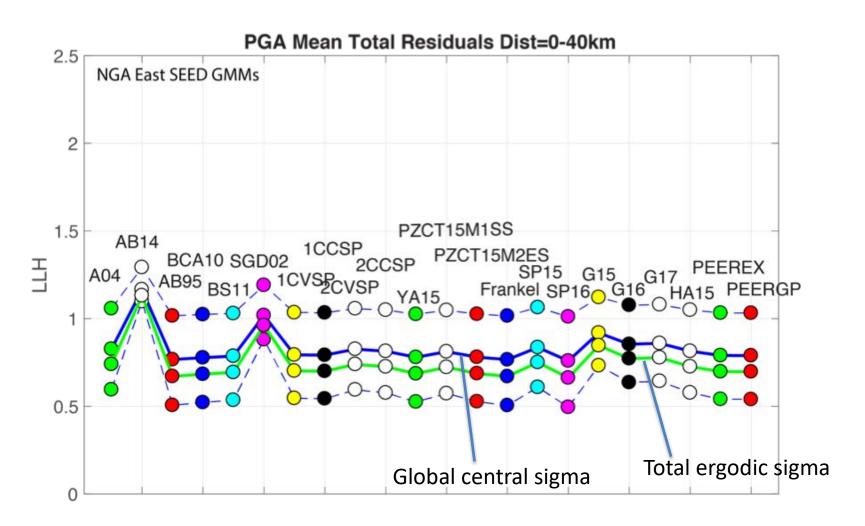
used mixed effects regression (LME) to determine GMM phi and taus for MLLH scoring

Mak and Schorlemmer (2017)

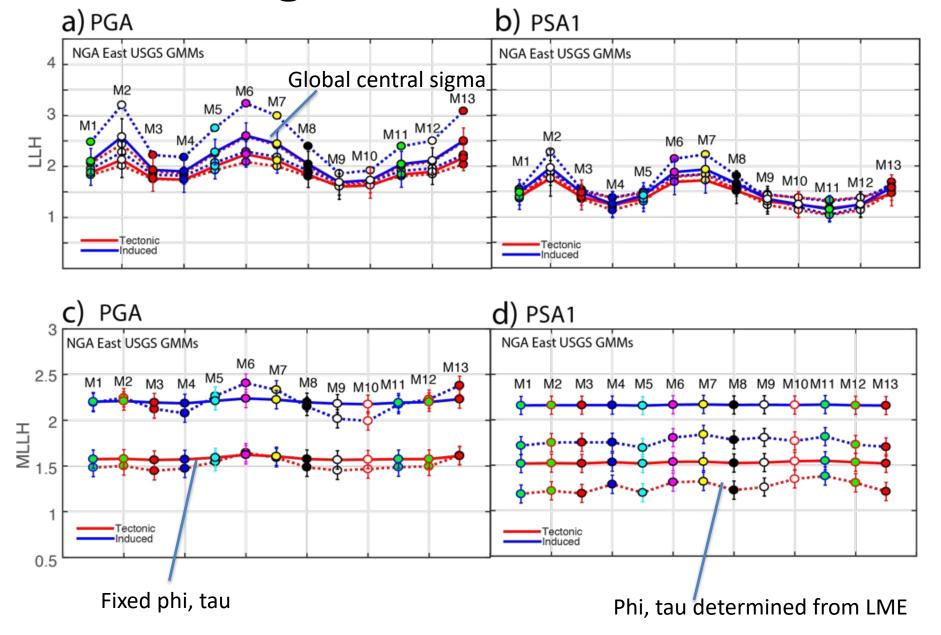
LLH/MLLH GM data, NGAE seed GMMs



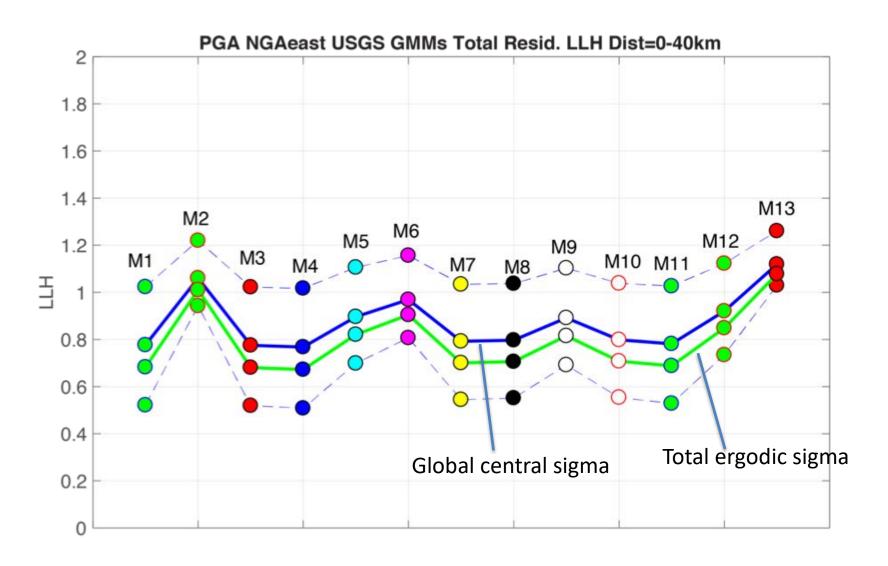
NGAE seed GMMs Simulation LLH



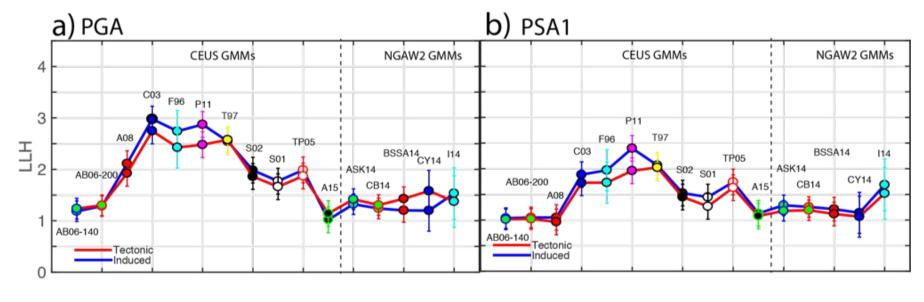
NGAE usgs LLH/MLLH GM data

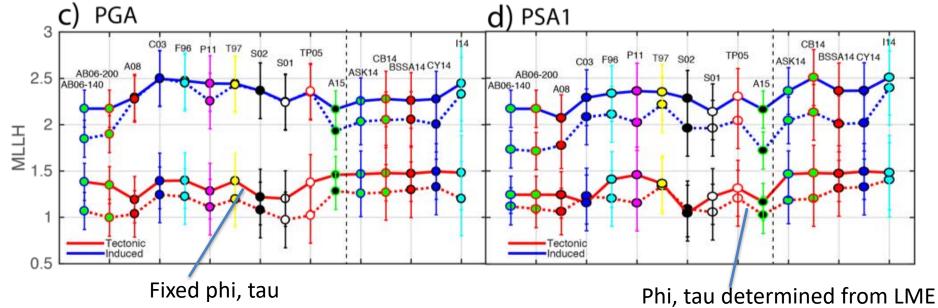


NGAE usgs GMMs Simulation LLH

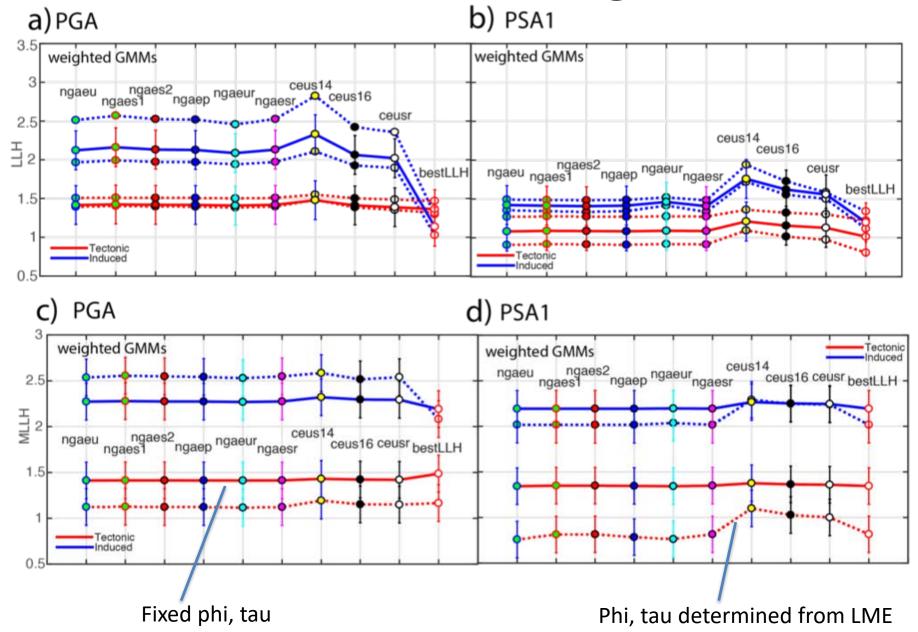


LLH/MLLH GM data

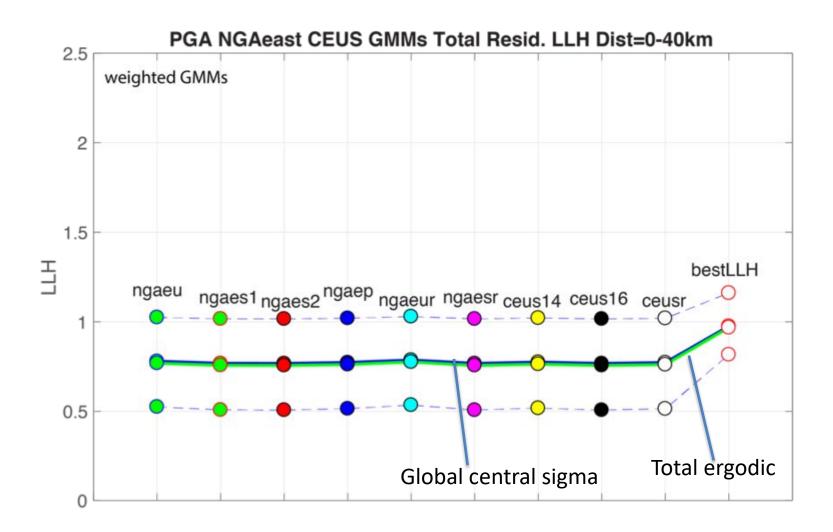




LLH/MLLH GM data weighted GMMS



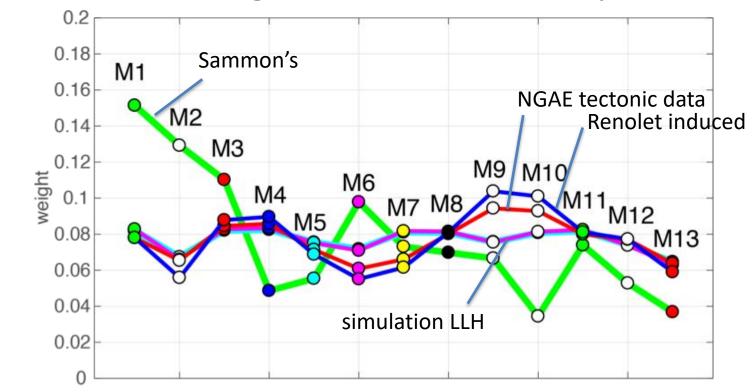
LLH Simulations weighted GMMs



Scherbaum LLH weighting

$$w_l = \frac{b^{-\langle \log_b(\mathcal{L}(g_l|\mathbf{x}))\rangle}}{\sum_{k=1}^K b^{-\langle \log_b(\mathcal{L}(g_k|\mathbf{x}))\rangle}}.$$

NGAE usgs GMMs PGA example



Observations

Older CEUS GMMs with large sigma have low LLH/MLLH scores

Most CEUS GMMs fit tectonic ground motions better than induced

All GMMs over-predict Induced GMs in 10-40km distance range

MLLH scores show GMM performance variation with individual phi, tau vs. fixed

LLH weights different than Sammons map weights

Not enough GM data to resolve significant differences in NGAE weighted GMMs

NGAE usgs GMMs generally perform better than older CEUS GMMs