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CEUS GMM Residual Study

Objective:

Evaluate CEUS GMMs for the 2018 hazard model.

GM Data

NGAE DB 

OK, KS induced DB 

simulations M6-8

GMMs 

2014 CEUS + A15 GMMs

NGAW2 GMMs

NGAE-seed GMMs

NGAE-usgs GMMs

logic tree weighted GMMs

Methods

LLH – Scherbaum et al., (2009)

multivariate LLH – Mak and Schorlemmer (2017)

Observations

USGS NSHMP Workshop, Newark, CA March, 2018



GM Data
PGA, PSA1s, PSA0.2s, M4-5.8

OK, KS induced. Renolet et al., (2017)
NGAE tectonic. Goulet et al., (2015)
Shakemap for more recent EQs

Also consider SM simulations M6-8
Sun and S. Rezaeian
A. Frankel
S. Hartzell



GMMs Evaluated
• GMMs recently implemented in nshmp-haz 

software system by Peter Powers.

– CEUS GMMs used in 2014, 2016 (A15) 
hazard models 

– NGAW2
– NGAE seed and updates (SP16, G16, G17)
– NGAE usgs
– Weighted mean GMMs

• 2014, 2016, 2017, 2018 hazard models

Site amplification:
NGAE site amplifications applied.

– Vs30 - Topo. Slope proxy used 
– measured Vs30 where available



Step 1: compute residuals

Ex. using AB06-140 GMM

Focus on 0-40 km

Renolet Db

NGAE Db



GM data

GM data

GM data

GM data



GM data Simulations

SimulationsGM data



(ngaeu) 13 NGA-East USGS GMMs Sammon’s map 
weighted GMM (Goulet et al., 2017), 

(ngaes1) 19 NGA-East SEED GMMs

(ngaes2) 19 NGA-East SEED GMMs

(ngaep) - ngaes1 and ngaes2 equally weighted (Petersen 
et al., 2018), 

(ngaeur) NGA-East USGS GMMs weighted based on LLH 
results from this study, 

(ngaesr) NGA-East SEED GMMs weighted based on 
results from this study, 

(ceus14) CEUS GMMs

(ceus16) CEUS GMMs + A15

(ceusr) CEUS GMMs using weights determined in this 
study

(bestLLH) 3 best LLH results for PGA GMMs using the 
induced earthquake ground motions (A15,ASK14,G17) 
equally weighted.

Weighted GMMs
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LLH Method 
The negative average log-likelihood LLH reflects the fit between the data and model:

N  = the number of observations xi , and g  the probability
density function (PDF) predicted by the GMPE  (normal distribution)

Model Selection in Seismic Hazard Analysis: An

Information-Theoretic Perspective

by Frank Scherbaum, Elise Delavaud, and Carsten Riggelsen

Abstract Although the methodological framework of probabilistic seismic hazard
analysis is well established, the selection of models to predict the ground motion at the
sites of interest remains a major challenge. Information theory provides a powerful
theoretical framework that can guide this selection process in a consistent way. From
an information-theoretic perspective, the appropriateness of models can be expressed
in terms of their relative information loss (Kullback–Leibler distance) and hence in
physically meaningful units (bits). In contrast to hypothesis testing, information-
theoretic model selection does not require ad hoc decisions regarding significance
levels nor does it require the models to be mutually exclusive and collectively exhaus-
tive. The key ingredient, the Kullback–Leibler distance, can be estimated from
the statistical expectation of log-likelihoods of observations for the models under
consideration. In the present study, data-driven ground-motion model selection based
on Kullback–Leibler-distance differences is illustrated for a set of simulated observa-
tions of response spectra and macroseismic intensities. Information theory allows
for a unified treatment of both quantities. The application of Kullback–Leibler-
distance based model selection to real data using the model generating data set
for the Abrahamson and Silva (1997) ground-motion model demonstrates the superior
performance of the information-theoretic perspective in comparison to earlier attempts
at data-driven model selection (e.g., Scherbaum et al., 2004).

Introduction

Probabilistic seismic hazard analysis (PSHA) has come a
long way since the pioneering work of Cornell and Esteva in
the 1960s, in particular regarding the incorporation of uncer-
tainties (Bommer andAbrahamson, 2006;McGuire, 2008). In
contrast to the early attempts of PSHA, it would now, for ex-
ample, be considered bad practice not to treat ground motion
as a random variable. Furthermore, the consideration of epi-
stemic uncertaintieswithin a logic tree framework has become
a de facto standard, although the selection of branch models
and weights is most often still treated rather informally. This
results in potential pitfalls regarding the construction and use
of logic trees (Bommer and Scherbaum, 2008) as well as in
large uncertainties on the products of a hazard analysis.
The current article is aimed at providing a general theoretical
framework formodel selection in PSHA.As a first step towards
a quantitative, robust approach for the selection and ranking of
ground-motion models, Scherbaum et al. (2004) proposed a
scheme based on exceedance probabilities (LH values in their
notation) to quantify the appropriateness of candidate models
with respect to a set of response spectral reference data. One of
the shortcomings of their method is that it still requires
subjective decisions (e.g., definition of classes and thresholds
for acceptability). This is also true for the whole class of

hypothesis-testing related methods. Here we are proposing
an information-theoretic approach that is more general and,
in addition, does not depend on ad hoc assumptions.

The following section provides a brief introduction into
the relevant fundamental concepts of information theory.
First, the key tool for information-theoretic model selection,
the Kullback–Leibler (KL) distance between models, is de-
rived from the likelihood principle for a set of observations.
We extend the discussion to situations where models might
not be completely independent from the observations that
are used to judge their appropriateness (bias-variance trade-
off, overfitting). Subsequently, information-theoretic model
selection and ranking is illustrated for increasingly complex
sets of simulated observations of response spectra and macro-
seismic intensities. Finally, the approach is applied to the
model generating data set of the Abrahamson and Silva
(1997) ground-motion model and compared to the method
of Scherbaum et al. (2004).

Model Selection and Information Theory

Ground-motion models are derived from the incomplete
knowledge that we have of the real processes that govern
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LLH score examples

Lower LLH score indicates better fit

LLH penalizes large sigma

best LLH scores when GMM sigma 
Similar to data sigma.

Defined by published GMM
Mean and sigma



MLLH Method

Expands LLH to take advantage of inter (within) and intra (between) event residual 
uncertainty (phi, tau) such that 

total Sigma = sqrt (phi^2 + tau^2)

Not all GMMs in the study have published phi and tau
NGAE models have uniform phi and tau

used mixed effects regression (LME) to determine GMM phi and taus for MLLH scoring

Mak and Schorlemmer (2017)



LLH/MLLH GM data, NGAE seed GMMs 

Phi, tau determined from LMEFixed phi, tau 

Global central sigma



NGAE seed GMMs Simulation LLH

Total ergodic sigmaGlobal central sigma



NGAE usgs LLH/MLLH GM data 

Phi, tau determined from LMEFixed phi, tau 

Global central sigma



NGAE usgs GMMs Simulation LLH

Total ergodic sigmaGlobal central sigma



LLH/MLLH GM data 

Phi, tau determined from LMEFixed phi, tau 



LLH/MLLH GM data weighted GMMS 

Phi, tau determined from LMEFixed phi, tau 



LLH Simulations weighted GMMs

Total ergodicGlobal central sigma



Scherbaum LLH weighting

NGAE usgs GMMs PGA example

Sammon’s

simulation LLH

NGAE tectonic data
Renolet induced



Observations

Older CEUS GMMs with large sigma have low LLH/MLLH scores

Most CEUS GMMs fit tectonic ground motions better than induced

All GMMs over-predict Induced GMs in 10-40km distance range

MLLH scores show GMM performance variation with individual phi, tau vs. fixed

LLH weights different than Sammons map weights

Not enough GM data to resolve significant differences in NGAE weighted GMMs

NGAE usgs GMMs generally perform better than older CEUS GMMs


