Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>. ## Bolton fault (Class B) No. 874 **Last Review Date: 2002-05-24** citation for this record: Personius, S.F., compiler, 2002, Fault number 874, Bolton fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:14 PM. #### **Synopsis** The northwest-striking Bolton fault forms a prominent (150-m-high), northeast-far escarpment in volcanic rocks of the Miocene Columbia River Basalt Group in the northern Willamette Valley. The fault is part of the Portland Hills-Clackamas Rivestructural zone. The fault is probably a southwest-dipping reverse fault with down the-northeast separation of about 200 m in Miocene volcanic rocks. No fault scar surficial deposits, or other unequivocal evidence of Quaternary displacement has described, so herein the fault is classified as Class B until further studies are cond # Name comments The Bolton fault was first mapped in part by Hammond and others (1974 #4050) Schlicker and Finlayson (1979 #4166), and was mapped in detail and presumably named after the town of Bolton by Beeson and others (1989 #4047) and Madin (1 #4067); the southern part of the fault has been mapped by Schlicker and Finlayso (1979 #4166), Burns and others (1997 #4079), and Gannett and Caldwell (1998 #4066). The fault may be part of the Portland Hills-Clackamas River structural zo Beeson and others (1985 #4022; 1989 #4023), and is included in the Portland Hil fault zone of Blakely and others (1995 #4021). | | Fault ID: This structure is fault number 27 of Geomatrix Consultants, Inc. (1995 #3593). | | |---------------------------|--|--| | County(s) and
State(s) | CLACKAMAS COUNTY, OREGON | | | Physiographic province(s) | PACIFIC BORDER | | | Reliability of location | Good
Compiled at 1:24,000 and 1:50,000 scale. | | | | Comments: Location of fault from ORActiveFaults (http://www.oregongeology.org/arcgis/rest/services/Public/ORActiveFaults/Map\$ downloaded 06/02/2016) attributed to Madin (2004 #7877, 2009 #7780). | | | Geologic setting | The northwest-striking Bolton fault forms a prominent northeast-facing escarpme volcanic rocks of the Miocene Columbia River Basalt Group in the northern Willamette Valley (Beeson and others, 1989 #4047). The fault is part of the Portla Hills-Clackamas River structural zone of Beeson and others (1989 #4023), and the Portland Hills fault zone of Blakely and others (1995 #4021). | | | Length (km) | 9 km. | | | Average strike | N53°W | | | Sense of movement | Reverse, Right lateral Comments: The published sense-of-movement and dip-direction data are somewly contradictory. The Bolton fault is mapped as a high-angle, east-dipping normal far Schlicker and Finlayson (1979 #4166) and Beeson and others (1989 #4047), but the fault is also modeled as a 70° east-dipping reverse fault in the earthquake hazards analysis of Geomatrix Consultants, Inc. (1995 #3593) and Wong and others (1996 #4073; 2000 #5137). Geologic relations are inconsistent with the latter geometry. Blakely and others (1995 #4021) describe an exposure of the Bolton fault south of Lake Oswego where slickensides and stratigraphic relations indicate west-side-up (southwest-dipping) reverse faulting with a strike-slip component. Southwest-dippreverse displacement with a right-lateral strike-slip component is consistent with tectonic setting, mapped geologic relations, and microseismicity in the area (Bees and others, 1989 #4047; Yelin and Patton, 1991 #4020; Blakely and others, 1995 #4021). | | | Dip Direction | SW | | | | Comments: Schlicker and Finlayson (1979 #4166) and Beeson and others (1989 #4047) show the Bolton fault dipping moderately to steeply northeast. Dip directi | | | | data from Geomatrix Consultants, Inc. (1995 #3593) and Wong and others (1999 #4073; 2000 #5137) are contradictory: they modeled the Bolton fault as a 70° northeast-dipping reverse fault, but a northeasterly dip direction is inconsistent w geologic mapping relations of Beeson and others (1989 #4047). | |---|--| | Paleoseismology studies | | | Geomorphic expression | The Bolton fault forms a prominent, 150-m-high northeast-facing escarpment in volcanic rocks of the Miocene Columbia River Basalt Group along the western m of the Willamette Valley (Beeson and others, 1989 #4047). Unruh and others (1999 #3597) conducted aerial and field reconnaissance and found no unequivocal evide of fault scarps on Quaternary deposits along the Bolton and related faults. Given lack of documented geomorphic expression in Quaternary deposits, herein we clatthe fault as Class B until further studies are conducted. | | Age of faulted
surficial
deposits | The Bolton fault offsets Miocene Columbia River Basalt Group volcanic rocks (Schlicker and Finlayson, 1979 #4166; Beeson and others, 1989 #4047). No fault scarps on surficial Quaternary deposits have been described along the fault trace (Unruh and others, 1994 #3597). However, the mapping and cross sections of Beand others (1989 #4047) are somewhat contradictory: their map shows the Bolton related faults as either juxtaposing late Quaternary sediments against Miocene bear or as concealed beneath these sediments, but their cross sections show most concealed to the map as cutting Quaternary sediments to the surface. This discrepance reflects drafting errors in the construction of the cross sections (I.P. Madin, pers. commun., 2000). | | Historic
earthquake | | | Most recent prehistoric deformation | undifferentiated Quaternary (<1.6 Ma) Comments: Pezzopane (1993 #3544) mapped the Bolton fault as active in the Quaternary (<1.6 Ma). Geomatrix Consultants, Inc. (1995 #3593), and Madin and Mabey (1996 #3575) mapped parts of the fault as active in the middle and late Quaternary (<780 ka) and other parts as active in the Quaternary (<1.6–1.8 Ma). and others (1994 #3597) found no unequivocal evidence of Quaternary displaced but concluded that the fault was potentially active, based on the presence of a prominent bedrock escarpment along the trace of the fault. Wong and others (199 #4073; 2000 #5137) considered the Bolton fault as a potentially seismogenic stru Given the lack of documented geomorphic expression in Quaternary deposits, her we classify the fault as Class B until further studies are conducted. | | Recurrence | | | interval | | |-------------|---| | - | Less than 0.2 mm/yr | | category | Comments: Cross sections from Beeson and others [(1989 #4047) suggest about 2 | | | of down-to-the-east separation of Miocene Columbia River Basalt Group volcani | | | rocks across the Bolton and related faults (Unruh and others, 1994 #3597); such c | | | indicate low rates of long-term slip. Geomatrix Consultants, Inc. (1995 #3593) ar | | | Wong and others (1999 #4073; 2000 #5137) used estimated slip rates of 0.005–0. mm/yr in their analyses of the earthquake hazards associated with the Bolton faul | | Date and | 2002 | | Compiler(s) | Stephen F. Personius, U.S. Geological Survey | | References | #4022 Beeson, M.H., Fecht, K.R., Reidel, S.P., and Tolan, T.L., 1985, Regional correlations within the Frenchman Springs member of the Columbia River Basalt Group—New insights into the middle Miocene tectonics of northwestern Oregon Oregon Geology, v. 47, no. 8, p. 87-96. | | | #4023 Beeson, M.H., Tolan, T.L., and Anderson, J.L., 1989, The Columbia River Basalt Group in western Oregon-Geologic structures and other factors that control flow emplacement patterns, <i>in</i> Reidel, S.P., and Hooper, P.R., eds., Volcanism and tectonism in the Columbia River Flood-Basalt Province: Geological Society of America Special Paper 239, p. 223-246. | | | #4047 Beeson, M.H., Tolan, T.L., and Madin, I.P., 1989, Geologic map of the Lal Oswego quadrangle, Clackamas, Multnomah, and Washington Counties, Oregon: of Oregon Geological Map Series GMS-59, 1 sheet, scale 1:24,000. | | | #4021 Blakely, R.J., Wells, R.E., Yelin, T.S., Madin, I.P., and Beeson, M.H., 1995 Tectonic setting of the Portland-Vancouver area, Oregon and Washington—Const from low-altitude aeromagnetic data: Geological Society of America Bulletin, v. no. 9, p. 1051-1062. | | | #4079 Burns, S., Lawrence, G., Brett, B., Yeats, R.S., and Popowski, T.A., 1997, showing faults, bedrock geology, and sediment thickness of the western half of th Oregon City 1:100,000 quadrangle, Washington, Multnomah, Clackamas, and Ma Counties, Oregon: State of Oregon, Department of Geology and Mineral Industric Interpretive Map Series IMS-4, 1 sheet, scale 1:100,000. | | | #4066 Gannett, M.W., and Caldwell, R.R., 1998, Geologic framework of the Willamette lowland aquifer system, Oregon and Washington: U.S. Geological Su Professional Paper 1424-A, 32 p., 8 pls., scale 1:250,000. | | | #3593 Geomatrix Consultants, Inc., 1995, Seismic design mapping, State of Oreg
Technical report to Oregon Department of Transportation, Salem, Oregon, under | Contract 11688, January 1995, unpaginated, 5 pls., scale 1:1,250,000. #4050 Hammond, P.E., Benson, G.T., Cash, D.J., Palmer, L.A., Donovan, J., and Gannon, B., 1974, A preliminary geological investigation of the ground effects of earthquakes in the Portland metropolitan area, Oregon: Technical report to State of Oregon, Department of Geology and Mineral Industries, Portland, Oregon, under Contract 14-08-0001-13458, 40 p., 3 pls. #4067 Madin, I.P., 1990, Earthquake-hazard geology maps of the Portland metropolitan area, Oregon—Text and map explanation: State of Oregon, Departm of Geology and Mineral Industries Open-File Report 0-90-2, 21 p., 8 pls., scale 1:24,000. #7877 Madin, I.P., 2004, Preliminary digital geologic compilation map of the Gree Portland Urban Area, Oregon: Oregon Department of Geology and Mineral Indus Open-File Report OFR O-04-02. #3575 Madin, I.P., and Mabey, M.A., 1996, Earthquake hazard maps for Oregon: of Oregon, Department of Geology and Mineral Industries Geological Map Series GMS-100, 1 sheet. #3544 Pezzopane, S.K., 1993, Active faults and earthquake ground motions in Or Eugene, Oregon, University of Oregon, unpublished Ph.D. dissertation, 208 p. #4166 Schlicker, H.G., and Finlayson, C.T., 1979, Geology and geologic hazards northwestern Clackamas County, Oregon: State of Oregon, Department of Geological Mineral Industries Bulletin 99, 79 p., 10 pls., scale 1:24,000. #3597 Unruh, J.R., Wong, I.G., Bott, J.D.J., Silva, W.J., and Lettis, W.R., 1994, Seismotectonic evaluation, Scoggins Dam, Tualatin Project, northwestern Oregor Final Report prepared for U.S. Department of the Interior, Bureau of Reclamation p., 4 pls., scale 1:500,000. #4073 Wong, I., Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li, S., Ma M., Sojourner, A., and Wang, Y., 1999, Earthquake scenario and probabilistic gro shaking maps for the Portland, Oregon metropolitan area: Technical report to U.S Geological Survey, under Contract 1434-HQ-96-GR-02727, 16 p., 12 pls. #5137 Wong, I., Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li, S., Ma M., Sojourner, A., and Wang, Y., 2000, Earthquake scenario and probabilistic gro shaking maps for the Portland, Oregon, metropolitan area: State of Oregon, Department of Geology and Mineral Industries Interpretive Map Series IMS-16, pamphlet, scale 1:62,500. | #4020 Yelin, T.S., and Patton, H.J., 1991, Seismotectonics of the Portland, Orego | |--| | region: Bulletin of the Seismological Society of America, v. 81, no. 1, p. 109-130 | ### Questions or comments? Facebook Twitter Google Email <u>Hazards</u> <u>Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios</u> <u>EarthquakesHazardsDataEducationMonitoringResearch</u> | Search | Search | |--------|--------| |--------|--------| HomeAbout UsContactsLegal