

Quaternary Fault and Fold Database of the United States

As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>.

Smith Valley fault (Class A) No. 687

Last Review Date: 1993-04-29

Compiled in cooperation with the Montana Bureau of Mines and Geology

citation for this record: Machette, M.N., compiler, 1993, Fault number 687, Smith Valley fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website,

https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:02 PM.

Synopsis	Poorly studied fault recognized from aerial photographs. Quaternary movement is suggested by its relatively fresh-looking scarp, but no one has examined this structure on the ground.
	Apparently initially recognized and named by Johns and others
comments	(1982 #259) for fault on northeast flank of Smith Valley, northwest of White Sulphur Springs, Montana. Fault extends from
	about 1 km southeast of Newlan Creek to about 4 km northwest
	of the North Fork Smith River.
	Fault ID: Refers to fault 134 (Smith Valley fault) of Johns and others (1982 #259).

County(s) and State(s)	MEAGHER COUNTY, MONTANA
Physiographic province(s)	NORTHERN ROCKY MOUNTAINS
Reliability of location	Poor Compiled at 1:250,000 scale.
	Comments: Transferred from 1:500,000-scale map of Johns and others (1982 #259).
Geologic setting	Northwest-trending, normal fault(?) that bounds the southwestern side of low hills, 4-10 km north of White Sulphur Springs. Fault inferred to be near prominent break in slope between hills and the gently sloping piedmont that grades southwestward to the Smith River.
Length (km)	6 km.
Average strike	N53°W
Sense of movement	Normal Comments: Johns and others (1982 #259).
Dip Direction	SW
Paleoseismology studies	
Geomorphic expression	Johns and others (1982 #259) concluded that this feature is a fault scarp, rather than fault-line scarp, because it there is no change in vegetation at the scarp. They estimate about 30 m of displacement in the Quaternary, although no documentation was presented in their report.
Age of faulted surficial deposits	
Historic earthquake	
Most recent prehistoric deformation	undifferentiated Quaternary (<1.6 Ma) Comments: Johns and others (1982 #259).

Recurrence interval	
Slip-rate	Less than 0.2 mm/yr
category	
	Comments: Inferred low slip rate based on Johns and others (1982)
	#259) estimate of 30 m of displacement in the Quaternary.
Date and	1993
Compiler(s)	Michael N. Machette, U.S. Geological Survey, Retired
References	#259 Johns, W.M., Straw, W.T., Bergantino, R.N., Dresser, H.W.,
	Hendrix, T.E., McClernan, H.G., Palmquist, J.C., and Schmidt,
	C.J., 1982, Neotectonic features of southern Montana east of
	112°30' west longitude: Montana Bureau of Mines and Geology
	Open-File Report 91, 79 p., 2 sheets.

Questions or comments?

Facebook Twitter Google Email

Hazards

<u>Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios</u> <u>EarthquakesHazardsDataEducationMonitoringResearch</u>

Search... Search

HomeAbout UsContactsLegal