Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the <u>interactive fault map</u>. ## Russ fault zone (Class A) No. 150 **Last Review Date: 2017-05-15** citation for this record: Bryant, W.A., compiler, 2017, Fault number 150, Russ fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:50 PM. | Synopsis | | |---------------------------|--| | Name comments | Fault ID: Refers to fault numbers 48 and 80 in Jennings (1994). | | County(s) and
State(s) | HUMBOLDT COUNTY, CALIFORNIA | | Physiographic province(s) | PACIFIC BORDER | | Reliability of location | Good Compiled at 1:100,000 scale. Comments: Location of fault from Qt_flt_ver_3- 0_Final_WGS84_polyline.shp (Bryant, W.A., written communication to K.Haller, August 15, 2017) attributed to 1:100,000-scale map by McLaughlin and others (2000). | | Geologic setting | | |-------------------------------------|--| | Length (km) | 112 km. | | Average strike | | | Sense of movement | Unspecified | | Dip Direction | Unknown | | Paleoseismology studies | | | Geomorphic expression | | | Age of faulted surficial deposits | | | Historic
earthquake | | | Most recent prehistoric deformation | late Quaternary (<130 ka) Comments: | | Recurrence interval | | | Slip-rate category | Unspecified | | Date and Compiler(s) | 2017
William A. Bryant, California Geological Survey | | References | #2878 Jennings, C.W., 1994, Fault activity map of California and adjacent areas, with locations of recent volcanic eruptions: California Division of Mines and Geology Geologic Data Map 6, 92 p., 2 pls., scale 1:750,000. #8200 McLaughlin, R.J., Ellen, S.D., Blake, M.C., Jr., Jayko, A.S., Irwin, W.P., Aalto, K.P., Carver, G.A. and Clarke, S.H., Jr., 2000, Geology of the Cape Mendocino, Eureka, Garberville, and southwestern part of the Hayfork 30x60 minute quadrangles and adjacent offshore area, northern California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2336, scale 1:100,000. | | Questions or comments? | |--| | Facebook Twitter Google Email | | <u>Iazards</u> | | Design Ground MotionsSeismic Hazard Maps & Site-Specific DataFaultsScenarios | | EarthquakesHazardsDataEducationMonitoringResearch | | Search Search | | HomeAbout UsContactsLegal | | | | |